A141083
a(n) = 2^(p - 2)*(2^p - 2), where p = prime(n).
Original entry on oeis.org
2, 12, 240, 4032, 1047552, 16773120, 4294901760, 68719214592, 17592181850112, 72057593769492480, 1152921503533105152, 4722366482800925736960, 1208925819613529663078400, 19342813113829668748787712
Offset: 1
Prime(1)=2, so a(1) = 2^(2 - 2)*(2^2 - 2) = 2^0*(4-2) = 2.
Prime(2)=3, so a(2) = 2^(3 - 2)*(2^3 - 2) = 2^1*(8-2) = 12.
A342234
a(n) = (27^n - 9^n)/2 - 12^n + 6^n.
Original entry on oeis.org
0, 3, 216, 7965, 243000, 6903873, 190505196, 5192233245, 140764942800, 3807455329593, 102881965757076, 2778771947174325, 75038262510065400, 2026169325431888913, 54708199287259567356, 1477140843778461200205, 39883035730488375376800, 1076844754605007952329833
Offset: 0
- M. Almeida, N. Moreira, and R. Reis, Enumeration and generation with a string automata representation, Theor. Comp. Sci. 387 (2007), 93-102; see B(k=3,n).
- Valery A. Liskovets, The number of connected initial automata, Kibernetika (Kiev), 3 (1969), 16-19 (in Russian; English translation: Cybernetics, 4 (1969), 259-262).
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
- Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. [Annotated scanned copy, with permission of the author.]
- Index entries for linear recurrences with constant coefficients, signature (54,-963,6966,-17496).
-
lista(nn) = {my(h=matrix(nn+3,nn+3)); my(H=vector(nn+1)); for(N=1, nn, for(M=1, nn, h[N,M] = if(M==1, 1, M^(N*M)-sum(t=1,M-1, binomial(M-1, t-1)*M^(N*(M-t))*h[N,t]))));
for(N=1, nn+1, H[N] = if(N==1, 0, h[N-1,3]/2)); H;}
Comments