cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A231551 Position of n in A231550.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 15, 14, 9, 12, 11, 10, 13, 16, 31, 30, 17, 28, 19, 18, 29, 24, 23, 22, 25, 20, 27, 26, 21, 32, 63, 62, 33, 60, 35, 34, 61, 56, 39, 38, 57, 36, 59, 58, 37, 48, 47, 46, 49, 44, 51, 50, 45, 40, 55, 54, 41, 52, 43, 42, 53, 64, 127, 126, 65
Offset: 0

Views

Author

Alex Ratushnyak, Nov 10 2013

Keywords

Comments

This permutation transforms the enumeration system of positive irreducible fractions A002487/A002487' (Calkin-Wilf) into the enumeration system A020651/A020650, and A162911/A162912 (Drib) the enumeration system into A245327/A245326. - Yosu Yurramendi, Jun 16 2015

Crossrefs

Programs

  • Mathematica
    Join[{0, 1}, Table[d = Reverse@IntegerDigits[n, 2]; FromDigits[Reverse@Append[FoldList[BitXor, d[[1]], Most@Rest@d], d[[-1]]], 2], {n, 2, 67}]] (* Ivan Neretin, Dec 28 2016 *)
  • Python
    for n in range(99):
      bits = [0]*64
      orig = [0]*64
      l = int.bit_length(int(n))
      t = n
      for i in range(l):
        bits[i] = orig[i] = t&1
        t>>=1
      #for i in range(1, l-1):  bits[i] ^= orig[i-1]   # A231550
      for i in range(1, l-1):  bits[i] ^= bits[i-1]   # A231551
      #for i in range(l-1):  bits[i] ^= orig[i+1]      # A003188
      #for i in range(1, l):  bits[l-1-i] ^= bits[l-i]  # A006068
      t = 0
      for i in range(l):  t += bits[i]<
    				
  • R
    maxrow <- 8 # by choice
    b01 <- 0 # b01 is going to be A010059
    a <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
       b01[2^(m+1)+    k] <-     b01[2^m+k]
         a[2^(m+1)+    k] <-       a[2^m+k]  + 2^(m+b01[2^(m+1)+    k])
       b01[2^(m+1)+2^m+k] <- 1 - b01[2^m+k]
         a[2^(m+1)+2^m+k] <-       a[2^m+k]  + 2^(m+b01[2^(m+1)+2^m+k])
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 10 2017
    
  • R
    maxblock <- 8 # by choice
    a <- 1:3
    for(n in 4:2^maxblock){
    ones <- which(as.integer(intToBits(n)) == 1)
    nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
    anbit <- nbit
    for(i in 2:(length(anbit) - 1))
       anbit[i] <- bitwXor(anbit[i], anbit[i-1])  # ?bitwXor
    a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 25 2021

Formula

A231550(a(n)) = a(A231550(n)) = n.
a(n) = A258996(A284460(n)) = A284459(A092569(n)), n > 0. - Yosu Yurramendi, Apr 10 2017
a(n) = A054429(A153154(n)), n > 0. - Yosu Yurramendi, Oct 04 2021

A268087 a(n) = A162909(n) + A162910(n).

Original entry on oeis.org

2, 3, 3, 5, 4, 4, 5, 8, 7, 5, 7, 7, 5, 7, 8, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 21, 18, 14, 19, 16, 11, 17, 19, 14, 13, 7, 11, 17, 13, 15, 18, 18, 15, 13, 17, 11, 7, 13, 14, 19, 17, 11, 16, 19, 14, 18, 21, 34, 29, 23, 31, 25, 17, 27, 30, 25, 23, 13, 20, 29, 22, 26, 31, 23, 19, 17, 22, 13, 8, 16, 17, 27
Offset: 1

Author

Yosu Yurramendi, Jan 26 2016

Keywords

Comments

If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m >= 0:
2,
3, 3,
5, 4, 4, 5,
8, 7, 5, 7, 7, 5, 7, 8,
13,11, 9,12, 9, 6,10,11,11,10,6, 9,12, 9,11,13,
21,18,14,19,16,11,17,19,14,13,7,11,17,13,15,18,18,15,13,17,11,7,13,14,19,17,11,16, ...
a(n) is palindromic in each level m >= 0 (ranks between 2^m and 2^(m+1)-1), because in each level m >= 0 A162910 is the reverse of A162909:
a(2^m + k) = a(2^(m+1) - 1 - k), m >= 0, 0 <= k < 2^m.
All columns have the Fibonacci sequence property: a(2^(m+2) + k) = a(2^(m+1) + k) + a(2^m + k), m >= 0, 0 <= k < 2^m (empirical observations).
a(2^m + k) = A162909(2^(m+2) + k), a(2^m + k) = A162909(2^(m+1)+ 2^m + k), a(2^m + k) = A162910(2^(m+1) + k), m >= 0, 0 <= k < 2^m (empirical observations).
a(n) = A162911(n) + A162912(n), where A162911(n)/A162912(n) is the bit reversal permutation of A162909(n)/A162910(n) in each level m >= 0 (empirical observations).
a(n) = A162911(2n+1), a(n) = A162912(2n) for n > 0 (empirical observations). n > 1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), which is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A162909(n)/A162910(n) is also an enumeration system of all positive rationals (Bird system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306.
The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), and A086592 (A020650+A020651).

Examples

			m = 3, k = 6: a(38) = 17, a(22) = 10, a(14) = 7.
		

Programs

  • PARI
    a(n) = my(x=1, y=1); for(i=0, logint(n, 2), if(bittest(n, i), [x, y]=[x+y, x], [x, y]=[y, x+y])); x \\ Mikhail Kurkov, Mar 10 2023

Formula

a(2^(m+2)+k) = a(2^(m+1)+k) + a(2^m+k) with m = 0, 1, 2, ... and 0 <= k < 2^m (empirical observation).
a(A059893(n)) = a(n) for n > 0. - Yosu Yurramendi, May 30 2017
From Yosu Yurramendi, May 14 2019: (Start)
Take the smallest m > 0 such that 0 <= k < 2^(m-1), and choose any M >= m,
a((1/3)*( A016921(2^(m-1)+k)*4^(M-m)-1)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k ).
a((1/3)*(2*A016921(2^(m-1)+k)*4^(M-m)-2)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k ) + a(2^(m-1)+k).
a((1/3)*( A016969(2^(m-1)+k)*4^(M-m)-2)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k+1).
a((1/3)*(2*A016969(2^(m-1)+k)*4^(M-m)-1)) = 2*a(2^(m-1)+k)*(M-m) + a(2^m+2*k+1) + a(2^(m-1)+k). (End)
a(n) = A007306(A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

A086593 Bisection of A086592, denominators of the left-hand half of Kepler's tree of fractions.

Original entry on oeis.org

2, 3, 4, 5, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 8, 13, 16, 17, 17, 22, 19, 23, 16, 23, 24, 27, 19, 26, 25, 29, 13, 20, 23, 25, 22, 29, 26, 31, 17, 25, 27, 30, 23, 31, 29, 34, 9, 15, 19, 20, 21, 27, 23, 28, 21, 30
Offset: 1

Author

Antti Karttunen, Aug 28 2003

Keywords

Comments

Also denominator of alternate fractions in Kepler's tree as shown in A294442. - N. J. A. Sloane, Nov 20 2017

Programs

  • Mathematica
    (* b = A020650 *) b[1] = 1; b[2] = 2; b[3] = 1; b[n_] := b[n] = Switch[ Mod[n, 4], 0, b[n/2 + 1] + b[n/2], 1, b[(n - 1)/2 + 1], 2, b[(n - 2)/2 + 1] + b[(n - 2)/2], 3, b[(n - 3)/2]]; a[1] = 2; a[n_] := b[4 n - 4]; Array[a, 100] (* Jean-François Alcover, Jan 22 2016, after Yosu Yurramendi's formula for A020650 *)
  • R
    maxlevel <- 15
    d <- c(1,2)
    for(m in 0:maxlevel)
     for(k in 1:2^m) {
       d[2^(m+1)    +k] <- d[k] + d[2^m+k]
       d[2^(m+1)+2^m+k] <- d[2^(m+1)+k]
    }
    a <- vector()
    for(m in 0:maxlevel) for(k in 0:(2^m-1)) a[2^m+k] <- d[2^(m+1)+k]
      a[1:63]
    # Yosu Yurramendi, May 16 2018

Formula

a(n) = A086592(2n-1) = A020650(4n-2).
a(n+1) = A071585(n) + A071766(n), n >= 0. - Yosu Yurramendi, Jun 30 2014
From Yosu Yurramendi, Jan 04 2016: (Start)
a(2^(m+1)+k+1) - a(2^m+k+1) = A071585(k), m >= 0, 0 <= k < 2^m.
a(2^(m+2)-k) = a(2^(m+1)-k) + a(2^m-k), m > 0, 0 <= k < 2^m-1.
(End)
a(2^n) = A000045(n+3). - Antti Karttunen, Jan 29 2016, based on above.
a(n) = A020651(4n-1), a(n+1) = A020651(4n+1), n > 0. - Yosu Yurramendi, May 08 2018
a(2^m+k) = A071585(2^(m+1)+k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, May 16 2018

A153154 Permutation of natural numbers: A059893-conjugate of A006068.

Original entry on oeis.org

0, 1, 3, 2, 7, 4, 5, 6, 15, 8, 9, 14, 11, 12, 13, 10, 31, 16, 17, 30, 19, 28, 29, 18, 23, 24, 25, 22, 27, 20, 21, 26, 63, 32, 33, 62, 35, 60, 61, 34, 39, 56, 57, 38, 59, 36, 37, 58, 47, 48, 49, 46, 51, 44, 45, 50, 55, 40, 41, 54, 43, 52, 53, 42, 127, 64, 65, 126, 67, 124
Offset: 0

Author

Antti Karttunen, Dec 20 2008

Keywords

Comments

A002487(1+a(n)) = A020651(n) and A002487(a(n)) = A020650(n). So, it generates the enumeration system of positive rationals based on Stern's sequence A002487. - Yosu Yurramendi, Feb 26 2020

Crossrefs

Inverse: A153153. a(n) = A059893(A006068(A059893(n))).

Programs

  • R
    maxn <- 63 # by choice
    a <- c(1,3,2)
    #
    for(n in 2:maxn){
      a[2*n] <- 2*a[n] + 1
      if(n%%2==0) a[2*n+1] <- 2*a[n+1]
      else        a[2*n+1] <- 2*a[n-1]
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Feb 26 2020
    
  • R
    # Given n, compute a(n) by taking into account the binary representation of n
    maxblock <- 8 # by choice
    a <- c(1, 3, 2)
    for(n in 4:2^maxblock){
      ones <- which(as.integer(intToBits(n)) == 1)
      nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
      anbit <- nbit
      for(i in 2:(length(anbit) - 1))
        anbit[i] <- bitwXor(anbit[i], anbit[i - 1])  # ?bitwXor
      anbit[0:(length(anbit) - 1)] <- 1 - anbit[0:(length(anbit) - 1)]
      a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    (a <- c(0, a))
    # Yosu Yurramendi, Oct 04 2021

Formula

From Yosu Yurramendi, Feb 26 2020: (Start)
a(1) = 1, for all n > 0 a(2*n) = 2*a(n) + 1, a(2*n+1) = 2*a(A065190(n)).
a(1) = 1, a(2) = 3, a(3) = 2, for all n > 1 a(2*n) = 2*a(n) + 1, and if n even a(2*n+1) = 2*a(n+1), else a(2*n+1) = 2*a(n-1).
a(n) = A054429(A231551(n)) = A231551(A065190(n)) = A284459(A054429(n)) =
A332769(A284459(n)) = A258996(A154437(n)). (End)

A231550 Permutation of nonnegative integers: for each bit[i] in the binary representation, except the most and the least significant bits, set bit[i] = bit[i] XOR bit[i-1], where bit[i-1] is the less significant bit, XOR is the binary logical exclusive or operator.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 11, 14, 13, 12, 15, 10, 9, 16, 19, 22, 21, 28, 31, 26, 25, 24, 27, 30, 29, 20, 23, 18, 17, 32, 35, 38, 37, 44, 47, 42, 41, 56, 59, 62, 61, 52, 55, 50, 49, 48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33, 64, 67, 70, 69, 76
Offset: 0

Author

Alex Ratushnyak, Nov 10 2013

Keywords

Comments

This permutation transforms the enumeration system of positive irreducible fractions A020651/A020650 into the enumeration system A002487/A002487' (Calkin-Wilf), and enumeration system A245327/A245326 into A162911/A162912 (Drib). - Yosu Yurramendi, Jun 16 2015

Crossrefs

Programs

  • Mathematica
    Join[{0, 1}, Table[d = IntegerDigits[n, 2]; FromDigits[Join[{d[[1]]}, BitXor[Most@Rest@d, Rest@Rest@d], {d[[-1]]}], 2], {n, 2, 68}]] (* Ivan Neretin, Dec 28 2016 *)
  • PARI
    a(n) = bitxor(n, if(n>3, bitand(n<<1, bitneg(0,logint(n,2))))); \\ Kevin Ryde, Jul 17 2021
  • Python
    for n in range(99):
      bits = [0]*64
      orig = [0]*64
      l = int.bit_length(int(n))
      t = n
      for i in range(l):
        bits[i] = orig[i] = t&1
        t>>=1
      for i in range(1, l-1):  bits[i] ^= orig[i-1]   # A231550
      #for i in range(1, l-1):  bits[i] ^= bits[i-1]   # A231551
      #for i in range(l-1):  bits[i] ^= orig[i+1]      # A003188
      #for i in range(1,l):  bits[l-1-i] ^= bits[l-i]  # A006068
      t = 0
      for i in range(l):  t += bits[i]<
    				
  • R
    a <- 1
    maxlevel <- 8 # by choice
    #
    for(m in 0:maxlevel) for(k in 0:(2^m-1)){
      a[2^(m+1)  +2*k] <- 2*a[2^m+k]
      a[2^(m+2)-1-2*k] <- 2*a[2^m+k] + 1
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 10 2017
    

Formula

a(A231551(n)) = A231551(a(n)) = n.
a(n) = A284460(A258996(n)) = A092569(A284460(n)), n > 0. - Yosu Yurramendi, Apr 10 2017

A273494 a(n) = A245325(n) + A245326(n).

Original entry on oeis.org

2, 3, 3, 5, 4, 5, 4, 8, 7, 7, 5, 8, 7, 7, 5, 13, 11, 12, 9, 11, 10, 9, 6, 13, 11, 12, 9, 11, 10, 9, 6, 21, 18, 19, 14, 19, 17, 16, 11, 18, 15, 17, 13, 14, 13, 11, 7, 21, 18, 19, 14, 19, 17, 16, 11, 18, 15, 17, 13, 14, 13, 11, 7, 34, 29, 31, 23, 30, 27, 25, 17, 31, 26, 29, 22, 25, 23, 20, 13, 29, 25, 26, 19, 27, 24, 23, 16, 23
Offset: 1

Author

Yosu Yurramendi, May 23 2016

Keywords

Comments

The terms (n>0) may be written as a left-justified array with rows of length 2^m, m >= 0:
2,
3, 3,
5, 4, 5, 4,
8, 7, 7, 5, 8, 7, 7, 5,
13,11,12, 9,11,10, 9, 6,13,11,12, 9,11,10, 9, 6,
21,18,19,14,19,17,16,11,18,15,17,13,14,13,11, 7,21,18,19,14,19,17,...
All columns have the Fibonacci sequence property: a(2^(m+2) + k) = a(2^(m+1) + k) + a(2^m + k), m >= 0, 0 <= k < 2^m (empirical observations).
The terms (n>0) may also be written as a right-justified array with rows of length 2^m, m >= 0:
2,
3, 3,
5, 4, 5, 4,
8, 7, 7, 5, 8, 7, 7, 5,
13,11,12, 9,11,10, 9, 6,13,11,12, 9,11,10, 9, 6,
..., 18,15,17,13,14,13,11, 7,21,18,19,14,19,17,16,11,18,15,17,13,14,13,11, 7,
Each column is an arithmetic sequence. The differences of the arithmetic sequences give the sequence A071585: a(2^(m+1)-1-k) - a(2^m-1-k) = A071585(k), m >= 0, 0 <= k < 2^m.
n > 1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), which is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A245325(n)/A245326(n) is also an enumeration system of all positive rationals, and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306.
The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), A086592 (A020650+A020651), A268087 (A162909+A162910).

Crossrefs

Programs

  • PARI
    a(n) = my(x=1, y=1); for(i=0, logint(n, 2), if(bittest(n, i), [x, y]=[x+y, y], [x, y]=[y, x+y])); x \\ Mikhail Kurkov, Mar 10 2023

Formula

a(n) = A273493(A059893(n)), a(A059893(n)) = A273493(n), n > 0. - Yosu Yurramendi, May 30 2017
a(n) = A007306(A059893(A180200(n))) = A007306(A059894(A154435(n))). - Yosu Yurramendi, Sep 20 2021

A124229 Numerator of g(n) defined by g(1)=1, g(2n)=1/g(n)+1, g(2n+1)=g(2n).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21
Offset: 1

Author

Benoit Cloitre, Oct 20 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Fibonacci[BitLength[Range[100]] + 1] (* Paolo Xausa, Oct 16 2024 *)
  • PARI
    g(n)=if(n<2,1,if(n%2,g(n-1),1/g(n/2)+1))
    a(n)=numerator(g(n))
    
  • PARI
    a(n)=fibonacci(ceil(log(n+1)/log(2))+1)
    
  • PARI
    a(n)=if(n<2,1,a(n\2)+a(n\4))

Formula

a(n) = A000045(ceiling(log(n+1)/log(2))+1).
a(1)=1 then a(n) = a(floor(n/2)) + a(floor(n/4)). - Benoit Cloitre, Feb 03 2014
a(n) = A000045(A070939(n) + 1). - Paolo Xausa, Oct 17 2024

Extensions

Offset changed to 1 by Paolo Xausa, Oct 16 2024

A124230 Denominator of g(n) defined by g(1)=1, g(2n)=1/g(n)+1, g(2n+1)=g(2n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 1

Author

Benoit Cloitre, Oct 20 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Fibonacci[BitLength[Range[100]]] (* Paolo Xausa, Oct 16 2024 *)
  • PARI
    g(n)=if(n<2,1,if(n%2,g(n-1),1/g(n/2)+1))
    a(n)=denominator(g(n))
    
  • PARI
    a(n)=fibonacci(ceil(log(n+1)/log(2)))

Formula

a(n) = A000045(ceiling(log(n+1)/log(2))).
a(n) = A000045(A070939(n)). - Paolo Xausa, Oct 17 2024
Previous Showing 11-18 of 18 results.