cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A250129 Decimal expansion of the negated value of the digamma function at 1/8.

Original entry on oeis.org

8, 3, 8, 8, 4, 9, 2, 6, 6, 3, 2, 9, 5, 8, 5, 4, 8, 6, 7, 8, 0, 2, 7, 4, 2, 9, 2, 3, 0, 8, 6, 3, 4, 3, 0, 0, 0, 0, 5, 1, 4, 4, 6, 0, 4, 2, 4, 4, 9, 4, 7, 7, 1, 4, 3, 1, 1, 6, 0, 8, 6, 9, 2, 4, 6, 8, 2, 9, 0, 7, 8, 2, 3, 4, 4, 3, 3, 1, 3, 3, 4, 8, 8, 9, 7, 4, 1, 9, 3, 9, 7, 8, 0, 2, 1, 1, 5, 9, 0, 8, 4, 9, 4, 5, 8
Offset: 1

Views

Author

Jean-François Alcover, Jan 15 2015

Keywords

Examples

			Psi(1/8) = -8.388492663295854867802742923086343000051446...
		

Crossrefs

Programs

Formula

Psi(1/8) = -gamma - (1/2)*(1+sqrt(2))*Pi - sqrt(2)*arccoth(sqrt(2)) - 4*log(2).

A306716 Decimal expansion of the negated value of the digamma function at 1/10.

Original entry on oeis.org

1, 0, 4, 2, 3, 7, 5, 4, 9, 4, 0, 4, 1, 1, 0, 7, 6, 7, 9, 5, 1, 6, 8, 2, 1, 6, 2, 1, 9, 0, 1, 0, 0, 2, 5, 4, 0, 4, 2, 9, 1, 6, 4, 2, 5, 6, 2, 4, 4, 4, 1, 8, 8, 9, 2, 0, 3, 2, 6, 3, 9, 2, 0, 8, 4, 1, 0, 8, 8, 6, 7, 9, 1, 0, 8, 8, 1, 5, 2, 6, 2, 7, 0, 2, 3, 1, 5, 3, 9, 8, 3, 4, 9, 1, 2, 1, 9, 9, 2, 7, 9, 8, 0, 8, 2
Offset: 2

Views

Author

Vaclav Kotesovec, Aug 22 2019

Keywords

Examples

			Equals 10.4237549404110767951682162190100254042916425624441889203263920841...
		

Crossrefs

Programs

  • Maple
    evalf(-Psi(1/10), 102);
  • Mathematica
    RealDigits[-PolyGamma[1/10], 10, 105][[1]]
  • PARI
    -psi(1/10)

Formula

Psi(1/10) = -gamma - Pi*5^(1/4)*(sqrt(2 + sqrt(5))/2) - 2*log(2) - 5*log(5)/4 - 3*sqrt(5)*log((1 + sqrt(5))/2)/2, where gamma is the Euler-Mascheroni constant A001620.
Equals gamma - H(-9/10), H(z) the harmonic number. - Peter Luschny, Aug 22 2019

A200136 Decimal expansion of the negated value of the digamma function at 2/5.

Original entry on oeis.org

2, 5, 6, 1, 3, 8, 4, 5, 4, 4, 5, 8, 5, 1, 1, 6, 1, 4, 5, 7, 3, 0, 6, 7, 5, 4, 8, 2, 0, 4, 7, 5, 2, 8, 4, 5, 5, 8, 2, 6, 3, 6, 1, 0, 9, 6, 5, 1, 0, 8, 1, 0, 1, 5, 7, 2, 3, 3, 9, 5, 3, 6, 7, 5, 2, 1, 2, 6, 1, 1, 0, 4, 2, 9, 3, 0, 5, 4, 1, 3, 8, 3, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(2/5) = -2.5613845445851161457306754820475...
		

Crossrefs

Programs

  • Maple
    -gamma-Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)*log((3+sqrt(5))/2)/4 ; evalf(%) ;
  • Mathematica
    RealDigits[ PolyGamma[2/5], 10, 84] // First (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    -psi(2/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(2/5) = -gamma -Pi*sqrt(1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

A200137 Decimal expansion of the negated digamma function at 3/5.

Original entry on oeis.org

1, 5, 4, 0, 6, 1, 9, 2, 1, 3, 8, 9, 3, 1, 9, 0, 4, 1, 4, 7, 6, 0, 6, 6, 3, 9, 4, 8, 8, 0, 6, 2, 3, 1, 9, 4, 1, 5, 1, 0, 5, 3, 4, 2, 5, 4, 6, 8, 9, 6, 0, 7, 2, 0, 8, 2, 6, 6, 6, 8, 5, 2, 6, 3, 2, 6, 1, 1, 6, 8, 8, 4, 1, 2, 4, 1, 1, 0, 2, 4, 6, 6, 0, 7, 3, 3, 4, 2, 4, 6, 7, 7, 1, 9, 7, 7, 8, 8, 2, 0, 1, 0, 0, 5, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(3/5) = -1.540619213893190414760663948806231941510...
		

Crossrefs

Programs

  • Maple
    -gamma+Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)/4*log(3/2+sqrt(5)/2) ; evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[3/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(3/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(3/5) = -gamma +Pi*sqrt( 1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A131265 Decimal expansion of the negative of the first derivative of the Gamma Function at 1/2.

Original entry on oeis.org

3, 4, 8, 0, 2, 3, 0, 9, 0, 6, 9, 1, 3, 2, 6, 2, 0, 2, 6, 9, 3, 8, 5, 9, 5, 1, 9, 8, 1, 4, 4, 3, 4, 9, 7, 5, 0, 0, 3, 2, 4, 2, 9, 3, 3, 4, 5, 0, 3, 7, 6, 0, 2, 1, 5, 1, 5, 4, 3
Offset: 1

Views

Author

R. J. Mathar, Sep 28 2007

Keywords

Examples

			3.4802309069132620269385951981443497500324293345037602151543...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sqrt[Pi]*PolyGamma[0, 1/2], 10, 59] // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    print(sqrt(Pi)*(Euler+2*log(2)));

Formula

Equals A020759 * A002161.

A248176 Decimal expansion of psi(-1/2).

Original entry on oeis.org

0, 3, 6, 4, 8, 9, 9, 7, 3, 9, 7, 8, 5, 7, 6, 5, 2, 0, 5, 5, 9, 0, 2, 3, 6, 6, 7, 0, 0, 1, 2, 4, 4, 4, 3, 2, 8, 0, 6, 8, 4, 0, 3, 9, 5, 3, 3, 9, 5, 6, 5, 8, 9, 2, 9, 5, 2, 8, 7, 2, 7, 4, 6, 1, 2, 8, 3, 4, 5, 0, 2, 9, 2, 8, 2, 9, 4, 5, 8, 9, 7, 8, 5, 1, 3, 2, 6, 2, 8, 2, 7, 1, 5, 4, 1, 5, 8, 7, 5, 4, 0, 1, 3, 6, 5, 5, 9, 0
Offset: 0

Views

Author

Stanislav Sykora, Oct 03 2014

Keywords

Comments

Psi denotes the digamma function.

Examples

			0.0364899739785765205590236670012444328068403953395658929528727461...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2 - (2*Log(2) + EulerGamma(R)); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[2 - (EulerGamma + 2Log[2]), 10, 100][[1]] (* Alonso del Arte, Oct 03 2014 *)
  • PARI
    psi(-1/2)
    

Formula

Equals 2 + psi(1/2) = 2 - 2*log(2) - EulerGamma = 2 - A020759, (since psi(1 + x) = psi(x) + 1/x).
Equals PolyGamma(3/2). - Peter Luschny, Apr 14 2020
Equals Sum_{k>=1} (zeta(2*k+1)-1)/((k+1)*(2*k+1)). - Amiram Eldar, May 24 2021
Equals 4*Pi*Integral_{x>=0} (log(1 + i*x) / (exp(-Pi*x) + exp(Pi*x))^2). - Peter Luschny, Aug 04 2021
Equals lim_{n->oo} (log(n) - Sum_{k=1..n} 1/(k+1/2)). - Amiram Eldar, Mar 04 2023

A247017 Decimal expansion of integral_{0..infinity} exp(-x^2)*log(x) dx.

Original entry on oeis.org

8, 7, 0, 0, 5, 7, 7, 2, 6, 7, 2, 8, 3, 1, 5, 5, 0, 6, 7, 3, 4, 6, 4, 8, 7, 9, 9, 5, 3, 6, 0, 8, 7, 4, 3, 7, 5, 0, 8, 1, 0, 7, 3, 3, 3, 6, 2, 5, 9, 4, 0, 0, 5, 3, 7, 8, 8, 5, 8, 3, 3, 8, 5, 1, 9, 6, 5, 2, 5, 8, 4, 2, 7, 1, 4, 4, 2, 9, 5, 4, 0, 0, 8, 3, 7, 2, 1, 9, 5, 0, 7, 8, 7, 7, 1, 9, 4, 2, 9, 6, 9, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 09 2014

Keywords

Examples

			-0.87005772672831550673464879953608743750810733362594...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5 Euler-Mascheroni constant, p. 31, 1.5.2 Integrals.

Crossrefs

Cf. A020759.

Programs

  • Mathematica
    RealDigits[-(1/4)*Sqrt[Pi]*( EulerGamma + 2*Log[2]), 10, 102] // First
    RealDigits[NIntegrate[Exp[-x^2]Log[x],{x,0,\[Infinity]},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    -(1/4)*sqrt(Pi)*(Euler + 2*log(2)) \\ Michel Marcus, Sep 09 2014

Formula

Equals -(1/4)*sqrt(Pi)*(EulerGamma + 2*log(2)).
Previous Showing 11-17 of 17 results.