cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A022369 Fibonacci sequence beginning 2, 14.

Original entry on oeis.org

2, 14, 16, 30, 46, 76, 122, 198, 320, 518, 838, 1356, 2194, 3550, 5744, 9294, 15038, 24332, 39370, 63702, 103072, 166774, 269846, 436620, 706466, 1143086, 1849552, 2992638, 4842190, 7834828, 12677018
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A022097.

Programs

  • Mathematica
    a={};b=2;c=14;AppendTo[a, b];AppendTo[a, c];Do[b=b+c;AppendTo[a, b];c=b+c;AppendTo[a, c], {n, 4!}];a (* Vladimir Joseph Stephan Orlovsky, Sep 18 2008 *)
    Transpose[NestList[{Last[#],Total[#]}&,{2,14},40]][[1]]  (* Harvey P. Dale, Apr 13 2011 *)
    LinearRecurrence[{1,1},{2,14},40] (* Harvey P. Dale, Oct 05 2019 *)
  • PARI
    for(n=0,50, print1(2*(Fibonacci(n+2) + 5*Fibonacci(n)), ", ")) \\ G. C. Greubel, Aug 27 2017

Formula

G.f.: (2+12*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 2*(Fibonacci(n+2) + 5*Fibonacci(n)). - G. C. Greubel, Aug 27 2017
a(n) = 2 * A022097(n). - Alois P. Heinz, Aug 27 2017

A099255 Expansion of g.f. (7+6*x-6*x^2-3*x^3)/((x^2+x-1)*(x^2-x-1)).

Original entry on oeis.org

7, 6, 15, 15, 38, 39, 99, 102, 259, 267, 678, 699, 1775, 1830, 4647, 4791, 12166, 12543, 31851, 32838, 83387, 85971, 218310, 225075, 571543, 589254, 1496319, 1542687, 3917414, 4038807, 10255923, 10573734, 26850355, 27682395, 70295142, 72473451
Offset: 0

Views

Author

Creighton Dement, Oct 09 2004

Keywords

Comments

One of two sequences involving the Lucas/Fibonacci numbers.
This sequence consists of pairs of numbers more or less close to each other with "jumps" in between pairs. "pos((Ex)^n)" sums up over all floretion basis vectors with positive coefficients for each n. The following relations appear to hold: a(2n) - (a(2n-1) + a(2n-2)) = 2*Luc(2n) a(2n+1) - a(2n) = Fib(2n), apart from initial term a(2n+1)/a(2n-1) -> 2 + golden ratio phi a(2n)/a(2n-2) -> 2 + golden ratio phi An identity: (1/2)a(n) - (1/2)A099256(n) = ((-1)^n)A000032(n)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-1},{7,6,15,15},40] (* Harvey P. Dale, Dec 29 2012 *)

Formula

a(n) = 2*pos((Ex)^n)
a(0) = 7, a(1) = 6, a(2) = a(3) = 15, a(n+4) = 3a(n+2) - a(n).
a(2n) = A022097(2n+1), a(2n+1) = A022086(2n+3).
a(n) = A061084(n+1)+A013655(n+2). [R. J. Mathar, Nov 30 2008]

Extensions

More terms from Creighton Dement, Apr 19 2005

A099256 Expansion of g.f. (3-x)*(1+3*x+x^2)/((1-x-x^2)*(1+x-x^2)).

Original entry on oeis.org

3, 8, 9, 23, 24, 61, 63, 160, 165, 419, 432, 1097, 1131, 2872, 2961, 7519, 7752, 19685, 20295, 51536, 53133, 134923, 139104, 353233, 364179, 924776, 953433, 2421095, 2496120, 6338509, 6534927, 16594432, 17108661, 43444787, 44791056, 113739929, 117264507, 297775000, 307002465, 779585071
Offset: 0

Views

Author

Creighton Dement, Oct 18 2004

Keywords

Comments

One of two sequences involving the Lucas/Fibonacci numbers. This sequence consists of pairs of numbers more or less close to each other with "jumps" in between pairs.
a(n+3) + a(n) - a(n+2) appears to be mysteriously connected with a(n+1).
Both this sequence and A099255 were created using "Floretion dynamical symmetries" (see link for further details).

Crossrefs

Cf. A000045, A099255, A000032, A055273 (bisection), A097134 (bisection).

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-1},{3,8,9,23},40] (* Harvey P. Dale, Apr 22 2012 *)

Formula

a(2n+2) - a(2n+1) = Fibonacci(2n-1).
A099255(n)/2 - a(n)/2 = (-1)^n*A000032(n)
a(0) = 3, a(1) = 8, a(2) = 9, a(3) = 23, a(n+4) = 3a(n+2) - a(n).
a(2n) = A022086(2n+2), a(2n+1) = A022097(2n+2).
a(n) = A013655(n+2)-A061084(n+1).

Extensions

Definition corrected, extended. - R. J. Mathar, Nov 13 2008

A199535 Clark Kimberling's even first column Stolarsky array read by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 11, 9, 10, 8, 18, 15, 17, 12, 13, 29, 24, 27, 19, 14, 21, 47, 39, 44, 31, 23, 16, 34, 76, 63, 71, 50, 37, 25, 20, 55, 123, 102, 115, 81, 60, 41, 33, 22, 89, 199, 165, 186, 131, 97, 66, 53, 35, 26, 144, 322, 267, 301, 212, 157, 107, 86, 57, 43, 28
Offset: 1

Views

Author

Casey Mongoven, Nov 07 2011

Keywords

Comments

The rows of the array can be seen to have the form A(n, k) = p(n)*Fibonacci(k) + q(n)*Fibonacci(k+1) where p(n) is the sequence {0, 1, 3, 3, 3, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, ...}{n >= 1} and q(n) is the sequence {1, 3, 3, 7, 2, 9, 9, 13, 13, 17, 17, 19, 19, 23, 23, 25, ...}{n >= 1}. - G. C. Greubel, Jun 23 2022

Examples

			The even first column stolarsky array (EFC array), northwest corner:
  1......2.....3.....5.....8....13....21....34....55....89...144 ... A000045;
  4......7....11....18....29....47....76...123...199...322...521 ... A000032;
  6......9....15....24....39....63...102...165...267...432...699 ... A022086;
  10....17....27....44....71...115...186...301...487...788..1275 ... A022120;
  12....19....31....50....81...131...212...343...555...898..1453 ... A013655;
  14....23....37....60....97...157...254...411...665..1076..1741 ... A000285;
  16....25....41....66...107...173...280...453...733..1186..1919 ... A022113;
  20....33....53....86...139...225...364...589...953..1542..2495 ... A022096;
  22....35....57....92...149...241...390...631..1021..1652..2673 ... A022130;
Antidiagonal rows (T(n, k)):
   1;
   2,   4;
   3,   7,   6;
   5,  11,   9,  10;
   8,  18,  15,  17, 12;
  13,  29,  24,  27, 19, 14;
  21,  47,  39,  44, 31, 23, 16;
  34,  76,  63,  71, 50, 37, 25, 20;
  55, 123, 102, 115, 81, 60, 41, 33, 22;
		

Crossrefs

Formula

From G. C. Greubel, Jun 23 2022: (Start)
T(n, 1) = A000045(n+1).
T(n, 2) = A000032(n+1), n >= 2.
T(n, 3) = A022086(n) = A097135(n), n >= 3.
T(n, 4) = A022120(n-2), n >= 4.
T(n, 5) = A013655(n-1), n >= 5.
T(n, 6) = A000285(n-2), n >= 6.
T(n, 7) = A022113(n-4), n >= 7.
T(n, 8) = A022096(n-4), n >= 8.
T(n, 9) = A022130(n-6), n >= 9.
T(n, 10) = A022098(n-5), n >= 10.
T(n, 11) = A022095(n-7), n >= 11.
T(n, 12) = A022121(n-8), n >= 12.
T(n, 13) = A022388(n-10), n >= 13.
T(n, 14) = A022122(n-10), n >= 14.
T(n, 15) = A022097(n-10), n >= 15.
T(n, 16) = A022088(n-10), n >= 16.
T(n, 17) = A022390(n-14), n >= 17.
T(n, n) = A199536(n).
T(n, n-1) = A199537(n-1), n >= 2. (End)

Extensions

More terms added by G. C. Greubel, Jun 23 2022

A017125 Table read by antidiagonals of Fibonacci-type sequences.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 3, 3, 3, 1, 4, 5, 5, 4, 4, 1, 5, 8, 8, 7, 5, 5, 1, 6, 13, 13, 11, 9, 6, 6, 1, 7, 21, 21, 18, 14, 11, 7, 7, 1, 8, 34, 34, 29, 23, 17, 13, 8, 8, 1, 9, 55, 55, 47, 37, 28, 20, 15, 9, 9, 1, 10, 89, 89, 76, 60, 45, 33, 23, 17, 10, 10, 1, 11, 144, 144, 123, 97, 73
Offset: 0

Views

Author

Henry Bottomley, Jul 31 2000

Keywords

Crossrefs

Rows are (essentially) A000045, A000045, A000032, A000285, A022095, A022096, A022097, etc. Columns are (essentially) A001477, A000012, A000027, A005408, A016789, A016885, etc. One of the diagonals is A007502.
Antidiagonal sums are in A019274.

Formula

T(n, k) = T(n, k-1)+T(n, k-2) [with T(n, 0) = n and T(n, 1) = 1] = 2*T(n-1, k)-T(n-2, k) = Fib(k)+n*Fib(k-1) = (s^k*(1+2n/s)-t^k*(1+2n/t))/(2^k*sqrt(5)) where s = (1+sqrt(5))/2 and t = (1-sqrt(5))/2 = 1-s.
G.f. for n-th row: (n+x-nx)/(1-x-x^2).

A022311 a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 6, 7, 14, 22, 37, 60, 98, 159, 258, 418, 677, 1096, 1774, 2871, 4646, 7518, 12165, 19684, 31850, 51535, 83386, 134922, 218309, 353232, 571542, 924775, 1496318, 2421094, 3917413, 6338508, 10255922, 16594431, 26850354, 43444786, 70295141, 113739928
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000045.

Programs

Formula

Equals A022097(n) - 1.
G.f.: (6*x-5*x^2)/(1-2*x+x^3). - Franklin T. Adams-Watters, Oct 17 2006
a(n) = F(n+2) + 5*F(n) - 1, where F = A000045. - G. C. Greubel, Aug 25 2017

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).
Previous Showing 11-17 of 17 results.