A281506
Numbers which require exactly 261 'Reverse and Add' steps to reach a palindrome.
Original entry on oeis.org
1186060307891929990, 1186060317791929990, 1186060327691929990, 1186060337591929990, 1186060347491929990, 1186060357391929990, 1186060367291929990, 1186060377191929990, 1186060387091929990, 1186060407881929990, 1186060417781929990, 1186060427681929990, 1186060437581929990
Offset: 1
Each term requires exactly 261 steps to turn into a 119-digit palindrome, the last term of A281507, and is separated by some multiples of 9000000 from the adjacent sequence terms.
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..126
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80, No. 3, 2012, 375-384.
- Sergei D. Shchebetov, 108864 terms (zipped file)
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
Cf.
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281507.
A281507
Trajectory of 1186061987030929990 under the "Reverse and Add!" operation.
Original entry on oeis.org
1186061987030929990, 2185352294922536801, 3271704589845072613, 6434410079699144336, 12768830049399288682, 41457129443403175403, 71914259877895350817, 143719619755790592734, 581014717313707510075, 1151030424627424920260, 1771324671891665221771
Offset: 0
a(1) = 1186061987030929990 + 999290307891606811 = 2185352294922536801.
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 0..261
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80 No. 3 2012, 375-384.
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
Cf.
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281506.
-
k:=1186061987030929990; [n eq 1 select k else Self(n-1) + Seqint(Reverse(Intseq(Self(n-1)))): n in [1..20]]; // Bruno Berselli, Jan 23 2017
-
NestList[#+IntegerReverse[#]&,1186061987030929990,20] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 17 2019 *)
A066058
In base 2: smallest integer which requires n 'Reverse and Add' steps to reach a palindrome.
Original entry on oeis.org
0, 2, 11, 44, 19, 20, 275, 326, 259, 202, 103, 74, 1027, 1070, 1049, 1072, 1547, 1310, 1117, 794, 569, 398, 3083, 2154, 1177, 1064, 4697, 4264, 4443, 2678, 2169, 1422, 779, 3226, 1551, 1114, 1815, 1062, 4197, 3106, 8697, 7238, 16633, 12302, 6683
Offset: 0
11 is the smallest integer which requires two steps to reach a base 2 palindrome (cf. A066057), so a(2) = 11; written in base 10: 11 -> 11 + 13 = 24 -> 24 + 3 = 27; written in base 2: 1011 -> 1011 + 1101 = 11000 -> 11000 + 11 = 11011.
-
(* For function b2reverse see A066057. *) function a066058(mx: integer); var k,m,n,rev,steps: integer; begin for k := 0 to mx do n := 0; steps := 0; m := n; rev := b2reverse(m); while not(steps = k and m = rev) do inc(n); m := n; rev := b2reverse(m); steps := 0; while steps < k and m <> rev do m := m + rev; rev := b2reverse(m); inc(steps); end; end; write(n,","); end; end; a066058(45);
-
Table[ SelectFirst[Range[0, 20000], (np = #; i = 0;
While[ np != IntegerReverse[np, 2] && i <= n,
np = np + IntegerReverse[np, 2]; i++];
i == n ) &] , {n, 0, 44}] (* Robert Price, Oct 16 2019 *)
-
def A066058(n):
if n > 0:
k = 0
while True:
m = k
for i in range(n):
s1 = format(m,'b')
s2 = s1[::-1]
if s1 == s2:
break
m += int(s2,2)
else:
s1 = format(m,'b')
if s1 == s1[::-1]:
return k
k += 1
else:
return 0 # Chai Wah Wu, Jan 06 2015
A281508
Numbers requiring exactly 261 'Reverse and Add' steps to reach a palindrome.
Original entry on oeis.org
1999290307891606810, 1999290317791606810, 1999290327691606810, 1999290337591606810, 1999290347491606810, 1999290357391606810, 1999290367291606810, 1999290377191606810, 1999290387091606810, 1999290407881606810, 1999290417781606810, 1999290427681606810, 1999290437581606810
Offset: 1
Each term requires exactly 261 steps to turn into a 119-digit palindrome, the last term of A281509, and is separated by some multiples of 9000000 from the adjacent sequence terms.
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..126
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80 No. 3 2012, 375-384.
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
Cf.
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281506,
A281507.
A281509
Trajectory of 1999291987030606810 (the largest presently known "most delayed palindrome") under the "Reverse and Add!" operation.
Original entry on oeis.org
1999291987030606810, 2185352294922536801, 3271704589845072613, 6434410079699144336, 12768830049399288682, 41457129443403175403, 71914259877895350817, 143719619755790592734, 581014717313707510075, 1151030424627424920260, 1771324671891665221771, 3542550333873429453542, 5996099577656760005995
Offset: 0
a(1) = 1999291987030606810 + 186060307891929991 = 2185352294922536801.
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 0..261
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80 No. 3 2012, 375-384.
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
Cf.
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281506,
A281507,
A281508.
A326414
Numbers which require exactly 288 'Reverse and Add' steps to reach a palindrome.
Original entry on oeis.org
12000700000025339936491, 12000700001015339936491, 12000700002005339936491, 12000700010024339936491, 12000700011014339936491, 12000700012004339936491, 12000700020023339936491, 12000700021013339936491, 12000700022003339936491, 12000700030022339936491
Offset: 1
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..10000
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80, No. 3, 2012, 375-384.
- Sergei D. Shchebetov, 19353600 terms (zipped file)
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
Cf.
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281506,
A281507.
Deleted an erroneous comment that said that the sequence was finite. -
N. J. A. Sloane, Jun 23 2022
A015994
Smallest k such that the smallest palindrome > k in the Reverse and Add! trajectory of k is reached after exactly n iterations.
Original entry on oeis.org
1, 5, 59, 69, 166, 79, 188, 193, 1397, 829, 167, 2069, 1797, 849, 177, 999, 739, 1798, 989, 6999, 1297, 869, 187, 89, 10797, 10853, 10921, 10971, 13297, 10548, 13293, 17793, 20889, 700269, 106977, 108933, 80359, 13697, 10794, 15891, 1009227, 1007619, 1009246
Offset: 1
-
iterationstosmallestpalindrome(n, bound) = my(x=n, i=0, d); while(1, if(i > bound, return(-1)); x=x+eval(concat(Vecrev(Str(x)))); i++; d=digits(x); if(d==Vecrev(d), return(i)))
a(n) = for(k=1, oo, if(iterationstosmallestpalindrome(k, n)==n, return(k))) \\ Felix Fröhlich, May 28 2022
Keyword "dead" removed, more terms added and entry revised by
Felix Fröhlich, May 28 2022; Jun 22 2022
A077441
In base 4, smallest number that requires n Reverse and Add! steps to reach a palindrome.
Original entry on oeis.org
0, 4, 7, 26, 28, 127, 306, 348, 398, 301, 308, 203, 311, 783, 294, 350, 199, 296, 4268, 16595, 5326, 4253, 17399, 8235, 6189, 4270, 3107, 1270, 1532, 511, 67816, 65975, 24670, 12395, 4282, 3119, 28799, 16861, 18164, 66268, 45087, 71164, 309234
Offset: 0
7 is the smallest number which requires two steps to reach a base 4 palindrome (cf. A075685), so a(2) = 5; 7 (decimal) = 13 -> 13 + 31 = 110 -> 110 + 011 = 121 (palindrome) = 25 (decimal).
-
{m=46; v=[]; for(j=1,m+1,v=concat(v,-1)); mc=m+1; n=0; while(mc>0,a=-1; c=0; k=n; while(c0,d=divrem(q,4); q=d[1]; rev=4*rev+d[2]); if(k==rev,a=c; c=m+1,c++; k=k+rev)); if(0<=a&&a<=m,if(v[a+1]<0,v[a+1]=n; mc--; print1([a,n]))); n++); print(); for(j=1,m+1,print1(v[j],","))}
-
from gmpy2 import digits
def A077441(n):
if n > 0:
k = 0
while True:
m = k
for i in range(n):
s = digits(m,4)
if s == s[::-1]:
break
m += int(s[::-1],4)
else:
s = digits(m,4)
if s == s[::-1]:
return k
k += 1
else:
return 0 # Chai Wah Wu, Jan 17 2015
A090069
Numbers n such that there are (presumably) eight palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
3, 8, 20, 22, 100, 101, 116, 122, 139, 151, 160, 215, 221, 238, 313, 314, 320, 337, 343, 413, 436, 512, 611, 634, 696, 710, 717, 727, 733, 832, 931, 1004, 1011, 1070, 1101, 1160, 1250, 1340, 1430, 1520, 1610, 1700, 1771, 2000, 2002, 2003, 2010, 2100, 2112
Offset: 1
The trajectory of 8 begins 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the eight palindromes in the trajectory of 8 and 8 is a term.
A090070
Numbers n such that there are (presumably) nine palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
4, 10, 11, 535, 1000, 1001, 10007, 10101, 20006, 30005, 50003, 60002, 70001, 80000, 80008, 100070, 110060, 120050, 130040, 140030, 150020, 160010, 170000, 170071, 200000, 200002, 1000003, 1000150, 1001001, 1010050, 1100140, 1110040, 1200130
Offset: 1
The trajectory of 4 begins 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the nine palindromes in the trajectory of 4 and 4 is a term.
Comments