cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A126329 Primes of the form 6p+5 where p is a prime.

Original entry on oeis.org

17, 23, 47, 71, 83, 107, 179, 191, 227, 251, 263, 359, 431, 443, 479, 503, 587, 647, 659, 683, 827, 839, 911, 947, 983, 1091, 1151, 1163, 1187, 1367, 1439, 1451, 1511, 1583, 1619, 1667, 1847, 1871, 1907, 2027, 2087, 2099, 2207, 2243, 2339, 2411, 2459, 2531, 2591
Offset: 1

Views

Author

J. M. Bergot, Mar 09 2007

Keywords

Crossrefs

For the corresponding primes p, see A023221.

Programs

Extensions

Corrected and extended by N. J. A. Sloane, Mar 10 2007

A352331 Numbers k for which phi(k) = phi(k''), where phi is the Euler totient function (A000010) and k'' the second arithmetic derivative of k (A068346).

Original entry on oeis.org

4, 27, 104, 260, 296, 405, 525, 740, 910, 945, 1460, 1806, 1818, 2504, 3125, 3140, 3176, 3656, 3860, 4563, 5540, 6056, 6930, 7016, 8420, 8636, 9224, 10820, 12573, 13256, 14024, 15140, 15464, 15944, 16136, 19940, 20456, 21690, 21860, 22856, 23336, 24020, 24260
Offset: 1

Views

Author

Marius A. Burtea, Apr 09 2022

Keywords

Comments

If m is a term in A051674, then m'' = m, phi(m'') = phi(m) so the sequence is infinite.
If p > 3 is at the intersection of A023208 and A005383 then m = 8*p is a term. Indeed, m'' = (8*p)'' = (12*p + 8)' = (4*(3*p + 2))' = 12*(p + 1) and phi(m'') = phi(12*(p + 1)) = phi(24*(p + 1)/2) = 8*(p - 1)/2 = 4*(p - 1) and phi(m) = phi(8*p) = 4*(p - 1).
If p > 5 is at the intersection of A023221 and A005383 then m = 20*p is a term. Indeed, m'' = (20*p)'' = (24*p + 20)' = (4*(6*p + 5))' = 4*(6*p + 6) = 24*(p + 1) and phi(m'') = phi(24*(p + 1)) = phi(48*(p + 1)/2) = 16*(p - 1)/2 = 8*(p - 1) and phi(m) = phi(20*p) = 8*(p - 1).

Examples

			phi(4'') = phi(4) because 4'' = 4, so 4 is a term.
phi (27'') = phi(27) because 27'' = 27, so 27 is a term.
phi(104'') = phi(164') = phi(168) = phi (8*3*7) = 4*2*6 = 48 and phi(104) = phi(8*13) = 4*12 = 48, so 104 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [2..24300]| not IsPrime(n) and EulerPhi(n) eq EulerPhi(Floor(f(Floor(f(n))))) ];
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[25000], EulerPhi[#] == EulerPhi[d[d[#]]] &] (* Amiram Eldar, Apr 10 2022 *)

A352332 Numbers k for which k = phi(k') + phi(k''), where phi is the Euler totient function (A000010), k' the arithmetic derivative of k (A003415) and k'' the second arithmetic derivative of k (A068346).

Original entry on oeis.org

4, 260, 294, 740, 1460, 3140, 3860, 5540, 8420, 10820, 15140, 19940, 21860, 24020, 24260, 27620, 37460, 40340, 46820, 49460, 55940, 61220, 70340, 85460, 101540, 114020, 124340, 132740, 133220, 144260, 148340, 149540, 155060, 162020, 164420, 167060, 170420, 173540
Offset: 1

Views

Author

Marius A. Burtea, Apr 09 2022

Keywords

Comments

If p > 3 is at the intersection of A023221 and A005383, then m = 20*p is a term. Indeed, m' = (20*p)' = 24*p + 20 = 4*(6*p + 5), m'' = (4*(6*p + 5))' = 4*(6*p + 6) = 24*(p + 1), phi(m') + phi(m'') = phi(4*(6*p + 5)) + phi(24*(p + 1)) = 2*(6*p + 4) + phi(48*(p + 1)/2) = 2*(6*p + 4) + 16*(p - 1)/2 = 12*p + 8 + 8*p - 8 = 20*p = m.

Examples

			phi(4') + phi(4'') = phi(4) + phi(4) = 2 + 2 = 4, so 4 is a term.
phi(260') + phi(260'') = phi(332) + phi(336) = 164 + 96 = 260, so 260 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [2..174000]|not IsPrime(n) and n-EulerPhi(Floor(f(n))) eq EulerPhi(Floor(f(Floor(f(n)))))];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[200000], CompositeQ[#] && EulerPhi[d[#]] + EulerPhi[d[d[#]]] == # &] (* Amiram Eldar, Apr 10 2022 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = my(adk=ad(k)); !isprime(k) && (k == eulerphi(adk) + eulerphi(ad(adk))); \\ Michel Marcus, Apr 30 2022

A359330 Composite k for which phi(k) + phi(k') = k, where k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

4, 6, 8, 10, 12, 18, 22, 28, 34, 58, 60, 72, 82, 84, 88, 108, 112, 118, 124, 132, 140, 142, 202, 204, 214, 216, 220, 228, 260, 274, 298, 324, 340, 358, 372, 382, 394, 444, 454, 478, 492, 508, 538, 562, 564, 572, 580, 620, 622, 644, 694, 708, 740, 804, 812, 820
Offset: 1

Views

Author

Marius A. Burtea, Jan 28 2023

Keywords

Comments

Composite numbers k for which phi(k') = cototient(k) (A051953).
The sequence refers only to composite numbers because for any prime number p we obtain phi(p) + phi(p') = p - 1 + phi(1) = p.
If p = 2^k - 1 is a Mersenne prime (A000668), then m = 4*p is a term. Indeed, m' = 4*(p + 1) = 4*2^k = 2^(k + 2) and phi(m) + phi(m') = phi(4*p) + phi(2^(k + 2)) = 2*(p-1) + 2^(k+1) = 2*(p - 1) + 2*(p + 1) = 4*p = m, so m is a term.
If p, q and p*q + p + q are prime numbers then m = 4*p*q is a term. Indeed, m'= 4*(p*q + p + q) and phi(m) + phi(m') = phi(4*p*q) + phi(4*(p*q + p + q)) = 2*(p - 1)*(q - 1) + 2*(p*q + p + q - 1) = 4*p*q.
If p is in A023221 then m = 20*p is a term. Indeed, m' = 24*p + 20 = 4*(6*p + 5) and phi(m) + phi(m') = phi(20*p) + phi(4*(6*p + 5)) = 8*(p-1) + 2*(6*p + 4) = 20*p = m, so m is a term.

Examples

			If m = 4 then m' = 4 and phi(m) + phi(m') = phi(4) + phi(4) = 2 + 2 = 4, so 4 is a term.
If m = 8 then m' = 12 and phi(m) + phi(m') = phi(8) + phi(12) = 4 + 4 = 8, so 8 is a term.
14 is not a term because phi(14) + phi(14') = 6 + phi(9) = 6 + 6 = 12 <> 14.
		

Crossrefs

Programs

  • Magma
    f:=func;  [n:n in [2..850]|not IsPrime(n) and n eq EulerPhi(Floor(f(n))) + EulerPhi(n)];
  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    q:= n-> not isprime(n) and (p-> p(n)+p(d(n))=n)(numtheory[phi]):
    select(q, [$4..1000])[];  # Alois P. Heinz, Jan 29 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[1000], CompositeQ[#] && EulerPhi[#] + EulerPhi[d[#]] == # &] (* Amiram Eldar, Jan 29 2023 *)
Previous Showing 11-14 of 14 results.