cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A283051 Positive integers n such that none of the primes of the form k*2^n + 1 (with k odd) divide any Fermat number F(m) = 2^(2^m) + 1, m >= 0.

Original entry on oeis.org

3, 5, 6, 10
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 27 2017

Keywords

Comments

Conjecture: sequence is infinite.
a(5) >= 18.

Crossrefs

A342974 Primes p such that the order of 2 modulo p is not divisible by the largest odd divisor of p - 1.

Original entry on oeis.org

31, 43, 109, 127, 151, 157, 223, 229, 241, 251, 277, 283, 307, 331, 397, 431, 433, 439, 457, 499, 571, 601, 631, 641, 643, 673, 683, 691, 727, 733, 739, 811, 911, 919, 953, 971, 997, 1013, 1021, 1051, 1069, 1093, 1103, 1163, 1181, 1321, 1327, 1399, 1423, 1429
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 01 2021

Keywords

Comments

Every prime factor of a composite Fermat number belongs to this sequence.
If a prime of the form 3*2^k + 1 belongs to this sequence, then k is in A204620 (see Golomb).
Primes p such that A014664(primepi(p)) is not divisible by A057023(primepi(p)). - Michel Marcus, Apr 26 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@300,Mod[MultiplicativeOrder[2,#],Max@Select[Divisors[#-1],OddQ]]!=0&] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
  • PARI
    forprime(p=3, 1429, if(Mod(znorder(Mod(2, p)), (p-1)>>valuation(p-1, 2)), print1(p, ", ")));

A354183 Primes p such that p divides 2^((p-1)/x) - 1, where x is the greatest prime factor of p - 1.

Original entry on oeis.org

17, 109, 151, 241, 251, 257, 331, 433, 631, 641, 673, 683, 1321, 1429, 1459, 1613, 2917, 3191, 3457, 3889, 4733, 4861, 5153, 5419, 6337, 7001, 7351, 8581, 9719, 11119, 11251, 11471, 12101, 13367, 13553, 13669, 14323, 14449, 15121, 17539, 18503, 20231, 20857
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 18 2022

Keywords

Comments

Together with 3 and 5, supersequence of A023394.
Are there any odd integers k (k is not a SierpiƄski number) such that every prime of the form k*2^m + 1 (m >= 1) does not belong to the sequence?

Crossrefs

Cf. A023394.

Programs

  • Magma
    gpf:=func; [p: p in PrimesUpTo(20857) | Modexp(2, Truncate((p-1)/gpf(p-1)), p) eq 1];
    
  • Mathematica
    Select[Prime[Range[2500]], PowerMod[2, (# - 1)/FactorInteger[# - 1][[-1, 1]], #] == 1 &] (* Amiram Eldar, May 19 2022 *)
  • PARI
    isok(p) = if (isprime(p) && (p>2), my(x=vecmax(factor(p-1)[,1])); ((2^((p-1)/x) - 1) % p) == 0); \\ Michel Marcus, May 19 2022

A372867 Distinct terms in A242017, listed in the order of their appearance.

Original entry on oeis.org

3, 5, 17, 97, 641, 257, 193, 274177, 65537, 449, 59649589127497217, 769, 1238926361552897, 5441, 5953, 2424833, 7873, 2753, 3329, 10753, 45592577, 18433, 4673, 15937, 444929, 11777, 12161, 21698561, 6977
Offset: 1

Views

Author

Jean-Marc Rebert, May 15 2024

Keywords

Comments

Conjecture: every term except 3 belongs to A366609. - Bill McEachen, Jun 12 2024

Crossrefs

Previous Showing 41-44 of 44 results.