cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A304446 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^2).

Original entry on oeis.org

1, 1, 14, 255, 6460, 209405, 8287038, 387605491, 20930373880, 1281932464680, 87828985857380, 6656774777650459, 553068813860022264, 49988877225605011590, 4883606791114233989450, 512829418039842285746460, 57607740718731604241384432, 6893420862444517638234527039
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1-x^k)^(n^2), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[1/QPochhammer[x]^(n^2), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n + 3/2) * n^(n - 1/2) / sqrt(2*Pi).

A278767 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 7, 22, 71, 206, 616, 1712, 4743, 12677, 33407, 86085, 218677, 546060, 1345840, 3271893, 7861239, 18670881, 43883904, 102112483, 235401947, 537869136, 1218743007, 2739566083, 6111766043, 13536683750, 29775945929, 65065819486, 141285315728, 304935221675, 654318376244, 1396166024244, 2963068779402
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the hexagonal numbers (A000384).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(2*d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).
a(n) ~ exp(-Zeta'(-1) - Zeta(3)/(2*Pi^2) - 75*Zeta(3)^3/(4*Pi^8) - 15^(5/4)*Zeta(3)^2/(2^(9/4)*Pi^5) * n^(1/4) - sqrt(15/2)*Zeta(3)/Pi^2 * sqrt(n) + 2^(9/4)*Pi/(3^(5/4)*5^(1/4)) * n^(3/4)) / (2^(67/48) * 15^(5/48) * Pi^(1/12) * n^(29/48)). - Vaclav Kotesovec, Dec 02 2016

A278769 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, 1, 8, 26, 88, 269, 843, 2456, 7115, 19892, 54756, 147355, 390517, 1017091, 2612670, 6617641, 16556913, 40933339, 100104289, 242276236, 580718077, 1379161494, 3247074738, 7581837910, 17564867853, 40388447308, 92206496318, 209069338580, 470944571003, 1054178579266, 2345477963043, 5188246121144, 11412352653001
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the heptagonal numbers (A000566).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(5*d-3)/2, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).
a(n) ~ exp(-3*Zeta'(-1)/2 - 5*Zeta(3)/(8*Pi^2) - 81*Zeta(3)^3/(2*Pi^8) - 3^(13/4)*Zeta(3)^2/(2^(7/4)*Pi^5) * n^(1/4) - 3^(3/2)*Zeta(3)/(sqrt(2)*Pi^2) * sqrt(n) + 2^(7/4)*Pi/3^(5/4) * n^(3/4)) / (2^(51/32) * 3^(3/32) * Pi^(1/8) * n^(19/32)). - Vaclav Kotesovec, Dec 02 2016

A282327 Expansion of exp( Sum_{n>=1} sigma_3(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 9, 77, 534, 3320, 18933, 100770, 506697, 2428161, 11161765, 49469005, 212246744, 884491121, 3589900607, 14223638534, 55122970206, 209307080221, 779837798559, 2854660220661, 10278494869342, 36439277959593, 127311828611819, 438712861233581
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(2*n)*x^n/n ): A182818 (k=1), A283224 (k=2), this sequence (k=3).
Cf. exp( Sum_{n>=1} sigma_3(m*n)*x^n/n ): A023871 (m=1), this sequence (m=2), A283244 (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_3(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283244 Expansion of exp( Sum_{n>=1} sigma_3(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 28, 518, 7439, 90517, 972398, 9472190, 85145743, 715281840, 5668682493, 42691867112, 307312234334, 2124355701646, 14157081285263, 91250293831492, 570441761053192, 3466874635995098, 20526329624103412, 118608374492197651, 669949478060261642
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(3*n)*x^n/n ): A182819 (k=1), A283238 (k=2), this sequence (k=3).
Cf. exp( Sum_{n>=1} sigma_3(m*n)*x^n/n ): A023871 (m=1), A282327 (m=2), this sequence (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_3(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A294778 Expansion of Product_{k>=1} 1/(1 - x^(2*k-1))^(k*(k-1)/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 3, 1, 6, 3, 11, 12, 18, 29, 33, 69, 67, 138, 141, 275, 306, 516, 656, 972, 1353, 1828, 2712, 3477, 5280, 6654, 10038, 12756, 18789, 24369, 34796, 46167, 63990, 86629, 117189, 160698, 213984, 295092, 389517, 536683, 706590, 968289, 1276310
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (16*3^(3/4)) + 3*Zeta(3) / (32*Pi^2)) / (2^(31/16) * 15^(1/8) * n^(5/8)).

A302449 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(4*k^2-1)/3).

Original entry on oeis.org

1, 1, 11, 46, 185, 700, 2676, 9646, 34166, 117500, 396506, 1310527, 4258313, 13607309, 42846151, 133039791, 407833188, 1235202869, 3699140386, 10960888382, 32154531807, 93437164720, 269087234273, 768340525743, 2176098269286, 6115444177489, 17058887661133
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

Euler transform of A000447.

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[1/(1 - x^k)^(k (4 k^2 - 1)/3), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (4 d^2 - 1)/3, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 26}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A000447(k).
a(n) ~ exp(5 * Zeta(5)^(1/5) * n^(4/5)/2 - Zeta(3) * n^(2/5) / (12 * Zeta(5)^(2/5)) + 4*Zeta'(-3)/3 - 1/36 - Zeta(3)^2 / (720*Zeta(5))) * A^(1/3) * Zeta(5)^(83/900) / (2^(7/180) * sqrt(5*Pi) * n^(533/900)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018

A305654 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 4, 14, 65, 323, 1890, 12002, 83901, 630818, 5081318, 43546333, 395422430, 3788368227, 38151667046, 402516707510, 4436230390977, 50948789415297, 608433141666219, 7540823673023319, 96826154085714992, 1285991546051286085, 17640769457638701839, 249602608552024560609
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).
Previous Showing 21-28 of 28 results.