A352843
Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k/k!).
Original entry on oeis.org
1, 1, 6, 44, 491, 6597, 110652, 2144606, 47988524, 1206275925, 33777572464, 1040200674416, 34967153135940, 1273241146218823, 49928549099500206, 2097300313258417056, 93953420539864844743, 4470694981375022862697, 225184078001798318202935
Offset: 0
-
nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k/k!))))
-
a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n-1, k-1)*a(n-k)));
A353233
Möbius transform of sigma_n(n).
Original entry on oeis.org
1, 4, 27, 268, 3125, 47418, 823543, 16842736, 387440145, 10009763520, 285311670611, 8918294495628, 302875106592253, 11112685047823702, 437893920912783255, 18447025552964452096, 827240261886336764177, 39346558271491791438000, 1978419655660313589123979
Offset: 1
a(6) = 47418; a(6) = Sum_{d|6} sigma_d(d) * mu(6/d) = sigma_1(1) * mu(6/1) + sigma_2(2) * mu(6/2) + sigma_3(3) * mu(6/3) + sigma_6(6) * mu(6/6) = 1*1 + 5*(-1) + 28*(-1) + 47450*1 = 47418.
-
a[n_] := DivisorSum[n, DivisorSigma[#, #]*MoebiusMu[n/#] &]; Array[a, 20] (* Wesley Ivan Hurt, Nov 12 2022 *)
-
a(n) = sumdiv(n, d, sigma(d,d)*moebius(n/d)); \\ Michel Marcus, Jun 24 2022
A356076
a(n) = Sum_{k=1..n} sigma_k(k) * floor(n/k).
Original entry on oeis.org
1, 7, 36, 315, 3442, 50926, 874471, 17717759, 405157961, 10414927743, 295726598356, 9214021189459, 312089127781714, 11424774177252514, 449318695090042077, 18896344248088180470, 846136606134424944649, 40192694877626991357901
Offset: 1
-
Table[Sum[DivisorSigma[k,k]Floor[n/k],{k,n}],{n,20}] (* Harvey P. Dale, Sep 08 2024 *)
-
a(n) = sum(k=1, n, sigma(k, k)*(n\k));
-
a(n) = sum(k=1, n, sumdiv(k, d, sigma(d, d)));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k))/(1-x))
-
from sympy import divisor_sigma
def A356079(n): return n+sum(divisor_sigma(k,k)*(n//k) for k in range(2,n+1)) # Chai Wah Wu, Jul 25 2022
A356587
Expansion of e.g.f. ( Product_{k>0} 1/(1 - (k * x)^k)^(1/k) )^x.
Original entry on oeis.org
1, 0, 2, 15, 236, 8490, 459234, 40325880, 4777773104, 767688946920, 156746202491880, 40056474754165320, 12448131138826294152, 4634982982962988690320, 2033625840922821008112144, 1039060311676326627685615800, 611331728108400284878223051520
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(k*x)^k)^(1/k))^x))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*sigma(j-1, j-1)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
A376019
a(n) = Sum_{d|n} d^n * binomial(n/d-1,d-1).
Original entry on oeis.org
1, 1, 1, 17, 1, 129, 1, 769, 19684, 4097, 1, 1614804, 1, 98305, 86093443, 4295426049, 1, 3876302043, 1, 4398055948289, 156905298046, 41943041, 1, 2820680971922038, 298023223876953126, 805306369, 213516729579637, 1441151884248219649, 1
Offset: 1
-
a(n) = sumdiv(n, d, d^n*binomial(n/d-1, d-1));
-
my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, ((k*x)^k/(1-(k*x)^k))^k))
-
from math import comb
from itertools import takewhile
from sympy import divisors
def A376019(n): return sum(d**n*comb(n//d-1,d-1) for d in takewhile(lambda d:d**2<=n,divisors(n))) # Chai Wah Wu, Sep 06 2024
A351750
a(n) = Sum_{p|n, p prime} p * sigma_p(p).
Original entry on oeis.org
0, 10, 84, 10, 15630, 94, 5764808, 10, 84, 15640, 3138428376732, 94, 3937376385699302, 5764818, 15714, 10, 14063084452067724991026, 94, 37589973457545958193355620, 15640, 5764892, 3138428376742, 480250763996501976790165756943064, 94, 15630, 3937376385699312
Offset: 1
a(6) = 94; a(6) = Sum_{p|6, p prime} p * sigma_p(p) = 2 * sigma_2(2) + 3 * sigma_3(3) = 2 * (1^2 + 2^2) + 3 * (1^3 + 3^3) = 94.
A351751
a(n) = Sum_{p|n, p prime} p^sigma_p(p).
Original entry on oeis.org
0, 32, 22876792454961, 32
Offset: 1
a(3) = 22876792454961; a(3) = Sum_{p|3, p prime} p^sigma_p(p) = 3^(1^3 + 3^3) = 3^28 = 22876792454961.
A362627
Euler transform of sigma_n(n) (sum of n-th powers of divisors of n).
Original entry on oeis.org
1, 1, 6, 34, 322, 3588, 52844, 900082, 18111465, 411941506, 10548286788, 298667744593, 9286665651198, 314077164671106, 11484692279345752, 451291302965764596, 18966834595501974235, 848853415894558707472, 40305029983754331855502, 2023571200162099967806430, 107109031661019664234558776
Offset: 0
-
a = Table[DivisorSigma[n, n], {n, 20}]; CoefficientList[Series[Product[1/(1 - x^m)^a[[m]], {m, 20}], {x, 0, 20}], x]
Comments