cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A356064 Numbers with a prime index other than 1 that is not a prime-power. Complement of A302492.

Original entry on oeis.org

13, 26, 29, 37, 39, 43, 47, 52, 58, 61, 65, 71, 73, 74, 78, 79, 86, 87, 89, 91, 94, 101, 104, 107, 111, 113, 116, 117, 122, 129, 130, 137, 139, 141, 142, 143, 145, 146, 148, 149, 151, 156, 158, 163, 167, 169, 172, 173, 174, 178, 181, 182, 183, 185, 188, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are numbers divisible by a prime number not of the form prime(q^k) where q is a prime number and k >= 1.

Examples

			The terms together with their prime indices begin:
   13: {6}
   26: {1,6}
   29: {10}
   37: {12}
   39: {2,6}
   43: {14}
   47: {15}
   52: {1,1,6}
   58: {1,10}
   61: {18}
   65: {3,6}
   71: {20}
   73: {21}
   74: {1,12}
   78: {1,2,6}
   79: {22}
   86: {1,14}
   87: {2,10}
		

Crossrefs

Heinz numbers of the partitions counted by A023893.
Allowing prime index 1 gives A356066.
A000688 counts factorizations into prime-powers, strict A050361.
A001222 counts prime-power divisors.
A023894 counts partitions into prime-powers, strict A054685.
A034699 gives the maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.
A355743 = numbers whose prime indices are prime-powers, squarefree A356065.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@PrimePowerQ/@DeleteCases[primeMS[#],1]&]

A111901 Number of partitions of n into parts that are primes or squares of primes.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 30, 37, 44, 53, 63, 75, 89, 105, 123, 145, 169, 197, 229, 266, 307, 355, 408, 469, 538, 615, 703, 801, 912, 1035, 1175, 1330, 1504, 1698, 1914, 2155, 2423, 2721, 3051, 3418, 3824, 4273, 4770, 5319, 5925
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + ...
a(10) = #{ 7+3, 5+5, 5+3+2, 2^2+2^2+2, 2^2+3+3, 2^2+2+2+2, 3+3+2+2, 2+2+2+2+2 } = 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(tau(d) in [2, 3], d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 30 2017
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*DivisorSum[j, If[2 <= DivisorSigma[0, #] <= 3, #, 0]&], {j, 1, n}]/n];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
  • PARI
    {a(n) = if(n < 0, 0, polcoeff( 1 / prod(k=1, primepi(n), (1 - x^prime(k)^2 + x*O(x^n)) * (1 - x^prime(k))), n))}; /* Michael Somos, Dec 26 2016 */

Formula

G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))). - Ilya Gutkovskiy, Dec 26 2016

A321347 Number of strict integer partitions of n containing no prime powers (including 1).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 4, 4, 2, 3, 4, 4, 5, 6, 5, 6, 7, 7, 9, 10, 10, 13, 12, 11, 15, 17, 16, 19, 20, 20, 25, 28, 26, 30, 33, 35, 41, 43, 42, 50, 55, 57, 64, 67, 67, 79, 86, 87, 97, 105, 109, 124, 131, 135, 151, 163, 169
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Comments

First differs from A286221 at a(30) = 6, A286221(30) = 5.

Examples

			The a(36) = 13 strict integer partitions:
  (36),
  (21,15), (22,14), (24,12), (26,10), (30,6), (35,1),
  (14,12,10), (18,12,6), (20,10,6), (20,15,1), (21,14,1),
  (15,14,6,1).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A321665 Number of strict integer partitions of n containing no 1's or prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 0, 3, 1, 3, 2, 4, 1, 5, 2, 5, 4, 6, 4, 9, 3, 8, 7, 10, 6, 13, 7, 13, 12, 16, 10, 20, 13, 22, 19, 24, 18, 32, 23, 34, 30, 37, 30, 49, 37, 50, 47, 58, 51, 73, 58, 77, 74, 89, 80, 108, 91, 116
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Examples

			The a(36) = 9 strict integer partitions:
  (36)
  (30,6)
  (21,15)
  (22,14)
  (24,12)
  (26,10)
  (18,12,6)
  (20,10,6)
  (14,12,10)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,2,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

G.f.: Product_{k>=2, k not a prime power} 1 + x^k. - Joerg Arndt, Dec 22 2020

A322454 Number of multiset partitions with no constant parts of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 4, 0, 4, 0, 3, 3, 1, 0, 7, 4, 1, 9, 4, 0, 7, 0, 11, 3, 1, 5, 15, 0, 1, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(30) = 7 multiset partitions:
    {{1,1,1,2,2,3}}
   {{1,2},{1,1,2,3}}
   {{1,3},{1,1,2,2}}
   {{2,3},{1,1,1,2}}
   {{1,1,2},{1,2,3}}
   {{1,1,3},{1,2,2}}
  {{1,2},{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[nrmptn[n]],Min@@Length/@Union/@#>1&]],{n,20}]

A347643 Number of partitions of n into at most 2 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 5, 4, 4, 3, 5, 4, 5, 5, 5, 4, 6, 4, 8, 5, 7, 4, 7, 3, 6, 4, 6, 4, 6, 4, 6, 5, 6, 3, 8, 4, 8, 4, 6, 3, 9, 3, 7, 4, 6, 3, 8, 4, 7, 4, 8, 3, 9, 3, 8, 5, 7, 3, 10, 4, 8, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2021

Keywords

Crossrefs

A347644 Number of partitions of n into at most 3 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 12, 12, 14, 13, 15, 15, 17, 17, 19, 18, 21, 19, 21, 20, 23, 21, 26, 22, 27, 24, 28, 27, 32, 30, 34, 31, 35, 31, 36, 32, 38, 32, 40, 32, 41, 34, 41, 36, 44, 38, 46, 38, 46, 39, 48, 39, 51, 41, 52, 38, 54, 42, 55, 44, 56
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2021

Keywords

Crossrefs

A347645 Number of partitions of n into at most 4 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 8, 10, 13, 15, 18, 21, 24, 27, 30, 32, 37, 39, 43, 46, 51, 52, 58, 59, 64, 66, 72, 73, 80, 81, 87, 88, 98, 96, 109, 108, 119, 117, 130, 124, 140, 135, 148, 145, 158, 151, 168, 160, 177, 170, 191, 179, 202, 189, 211, 197, 223, 206, 235, 220, 242
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2021

Keywords

Crossrefs

A347646 Number of partitions of n into at most 5 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 24, 30, 35, 42, 47, 55, 62, 71, 77, 88, 96, 107, 114, 127, 135, 149, 156, 173, 180, 198, 205, 224, 233, 254, 262, 287, 297, 321, 330, 358, 366, 396, 403, 436, 441, 478, 478, 517, 521, 560, 562, 609, 607, 655, 655, 702, 699, 756, 746
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2021

Keywords

Crossrefs

A347647 Number of partitions of n into at most 6 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 29, 36, 45, 54, 64, 75, 89, 102, 118, 133, 152, 170, 191, 210, 236, 257, 284, 309, 340, 366, 401, 428, 469, 499, 543, 575, 628, 661, 717, 753, 816, 853, 922, 961, 1035, 1076, 1155, 1195, 1284, 1324, 1417, 1460, 1564, 1604, 1717, 1755
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2021

Keywords

Crossrefs

Previous Showing 31-40 of 56 results. Next