cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A284289 Number of partitions of n into prime power divisors of n (not including 1).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 7, 1, 2, 2, 10, 1, 7, 1, 10, 2, 2, 1, 34, 2, 2, 5, 13, 1, 21, 1, 36, 2, 2, 2, 72, 1, 2, 2, 73, 1, 28, 1, 19, 13, 2, 1, 249, 2, 10, 2, 22, 1, 50, 2, 127, 2, 2, 1, 419, 1, 2, 17, 202, 2, 42, 1, 28, 2, 43, 1, 1260, 1, 2, 13, 31, 2, 49, 1, 801, 23, 2, 1, 774, 2, 2, 2, 280, 1, 608
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2017

Keywords

Examples

			a(8) = 4 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2] and [2, 2, 2, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local b, l; l, b:= sort(
          [select(x-> nops(ifactors(x)[2])=1, divisors(n))[]]),
          proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
            b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
          end; b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 30 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[Product[1/(1 - Boole[PrimePowerQ[d[[k]]]] x^d[[k]]), {k, Length[d]}], {x, 0, n}], x, n], {n, 0, 90}] (* or *)
    a[0]=1; a[1]=0; a[n_] := Length@IntegerPartitions[n, All, Join @@ (#[[1]]^Range[#[[2]]] & /@ FactorInteger[n])]; a /@ Range[0, 90] (* Giovanni Resta, Mar 25 2017 *)

Formula

a(n) = [x^n] Product_{p^k|n, p prime, k >= 1} 1/(1 - x^(p^k)).
a(n) = 1 if n is a prime.
a(n) = 2 if n is a semiprime.

A321347 Number of strict integer partitions of n containing no prime powers (including 1).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 4, 4, 2, 3, 4, 4, 5, 6, 5, 6, 7, 7, 9, 10, 10, 13, 12, 11, 15, 17, 16, 19, 20, 20, 25, 28, 26, 30, 33, 35, 41, 43, 42, 50, 55, 57, 64, 67, 67, 79, 86, 87, 97, 105, 109, 124, 131, 135, 151, 163, 169
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Comments

First differs from A286221 at a(30) = 6, A286221(30) = 5.

Examples

			The a(36) = 13 strict integer partitions:
  (36),
  (21,15), (22,14), (24,12), (26,10), (30,6), (35,1),
  (14,12,10), (18,12,6), (20,10,6), (20,15,1), (21,14,1),
  (15,14,6,1).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A321665 Number of strict integer partitions of n containing no 1's or prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 0, 3, 1, 3, 2, 4, 1, 5, 2, 5, 4, 6, 4, 9, 3, 8, 7, 10, 6, 13, 7, 13, 12, 16, 10, 20, 13, 22, 19, 24, 18, 32, 23, 34, 30, 37, 30, 49, 37, 50, 47, 58, 51, 73, 58, 77, 74, 89, 80, 108, 91, 116
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Examples

			The a(36) = 9 strict integer partitions:
  (36)
  (30,6)
  (21,15)
  (22,14)
  (24,12)
  (26,10)
  (18,12,6)
  (20,10,6)
  (14,12,10)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,2,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

G.f.: Product_{k>=2, k not a prime power} 1 + x^k. - Joerg Arndt, Dec 22 2020

A322454 Number of multiset partitions with no constant parts of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 4, 0, 4, 0, 3, 3, 1, 0, 7, 4, 1, 9, 4, 0, 7, 0, 11, 3, 1, 5, 15, 0, 1, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(30) = 7 multiset partitions:
    {{1,1,1,2,2,3}}
   {{1,2},{1,1,2,3}}
   {{1,3},{1,1,2,2}}
   {{2,3},{1,1,1,2}}
   {{1,1,2},{1,2,3}}
   {{1,1,3},{1,2,2}}
  {{1,2},{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[nrmptn[n]],Min@@Length/@Union/@#>1&]],{n,20}]

A356066 Numbers with a prime index that is not a prime-power. Complement of A355743.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 72, 73, 74, 76, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 96, 98, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
		

Crossrefs

The complement is A355743, counted by A023894.
The squarefree complement is A356065, counted by A054685.
Allowing prime index 1 gives A356064, complement A302492.
A000688 counts factorizations into prime-powers, strict A050361.
A001222 counts prime-power divisors.
A034699 gives the maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@PrimePowerQ/@primeMS[#]&]

Formula

Union of A299174 and A356064.

A280151 Expansion of Product_{k>=1} 1/(1 - floor(1/omega(2*k+1))*x^(2*k+1)), where omega() is the number of distinct prime factors (A001221).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 23, 26, 29, 33, 37, 42, 46, 53, 58, 66, 74, 81, 91, 101, 113, 124, 139, 153, 169, 188, 207, 228, 252, 278, 304, 336, 369, 405, 444, 487, 533, 583, 640, 697, 763, 832, 908, 990, 1078, 1175, 1278
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2016

Keywords

Comments

Number of partitions of n into odd prime powers (1 excluded).

Examples

			a(12) = 3 because we have [9, 3], [7, 5], [3, 3, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    nmax = 67; CoefficientList[Series[Product[1/(1 - Floor[1/PrimeNu[2 k + 1]] x^(2 k + 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - floor(1/omega(2*k+1))*x^(2*k+1)).

A307726 Number of partitions of n into 2 prime powers (not including 1).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 2, 4, 3, 4, 4, 4, 3, 5, 3, 6, 4, 7, 4, 7, 2, 5, 4, 6, 3, 5, 3, 5, 5, 6, 2, 7, 3, 7, 4, 6, 2, 8, 3, 7, 4, 6, 2, 7, 3, 6, 4, 7, 2, 9, 2, 7, 5, 7, 2, 9, 3, 7, 6, 7, 3, 9, 2, 8, 4, 6, 4, 10, 3, 9, 4, 7, 3, 11, 4, 8, 3, 7, 2, 10, 2, 8, 3, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2019

Keywords

Examples

			a(10) = 3 because we have [8, 2], [7, 3] and [5, 5].
		

Crossrefs

Programs

  • Maple
    # note that this requires A246655 to be pre-computed
    f:= proc(n, k, pmax) option remember;
      local t, p, j;
      if n = 0 then return `if`(k=0, 1, 0) fi;
      if k = 0 then return 0 fi;
      if n > k*pmax then return 0 fi;
      t:= 0:
      for p in A246655 do
        if p > pmax then return t fi;
        t:= t + add(procname(n-j*p, k-j, min(p-1, n-j*p)), j=1..min(k, floor(n/p)))
      od;
      t
    end proc:
    map(f, [$0..100]); # Robert Israel, Apr 29 2019
  • Mathematica
    Array[Count[IntegerPartitions[#, {2}], _?(AllTrue[#, PrimePowerQ] &)] &, 101, 0]

Formula

a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^A246655(k)).

A300580 Number of partitions of n into prime power parts (not including 1) that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 1, 3, 2, 11, 1, 18, 6, 9, 5, 43, 5, 65, 7, 31, 30, 137, 5, 115, 59, 84, 26, 379, 19, 519, 42, 213, 197, 323, 23, 1267, 340, 489, 50, 2213, 107, 2897, 221, 375, 938, 4871, 61, 3733, 662, 2193, 553, 10218, 409, 4241, 310, 4341, 3685, 20586, 154, 25792, 5635, 2862, 990, 12806
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Examples

			a(10) = 2 because we have [7, 3] and [4, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[Mod[n, k] != 0 && PrimePowerQ[k]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 65}]

A280586 Expansion of Product_{p prime, k>=2} 1/(1 - x^(p^k)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 2, 1, 0, 4, 2, 1, 0, 6, 5, 2, 2, 6, 5, 2, 2, 10, 8, 5, 4, 12, 8, 5, 4, 16, 14, 8, 9, 18, 16, 8, 9, 24, 23, 15, 14, 30, 25, 18, 14, 36, 36, 26, 25, 42, 42, 29, 28, 52, 54, 42, 40, 65, 60, 50, 43, 78, 78, 65, 63, 93, 92, 73, 72, 110, 117, 96, 94, 135, 133, 114, 103, 158, 166, 145
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Number of partitions of n into proper prime powers (A246547).

Examples

			a(16) = 4 because we have [16], [8, 8], [8, 4, 4] and [4, 4, 4, 4].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Product[1/(1 - Sign[PrimeOmega[k] - 1] Floor[1/PrimeNu[k]] x^k), {k, 2, nmax}], {x, 0, nmax}], x]
  • PARI
    x='x+O('x^68); Vec(prod(k=2, 67, 1/(1 - sign(bigomega(k) - 1) * (1\omega(k)) * x^k))) \\ Indranil Ghosh, Apr 03 2017

Formula

G.f.: Product_{p prime, k>=2} 1/(1 - x^(p^k)).

A318914 Expansion of e.g.f. Product_{p prime, k>=1} 1/(1 - x^(p^k))^(1/(p^k)).

Original entry on oeis.org

1, 0, 1, 2, 15, 44, 475, 2274, 33313, 227240, 2920041, 26754650, 469513231, 4613913732, 85842524755, 1174844041994, 24672317426625, 334246510927184, 7985602649948113, 127351500133158450, 3282809137540001551, 60776696924693716700, 1556379682561575238731, 32568139442090869594802
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 05 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(exp(add(bigomega(k)*x^k/k,k=1..100)),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(Boole[PrimePowerQ[k]]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Exp[Sum[PrimeOmega[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (n - 1)! Sum[PrimeOmega[k] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} bigomega(k)*x^k/k), where bigomega(k) = number of prime divisors of k counted with multiplicity (A001222).
Previous Showing 31-40 of 56 results. Next