cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A164559 a(n) = 6^n/3 - 1.

Original entry on oeis.org

1, 11, 71, 431, 2591, 15551, 93311, 559871, 3359231, 20155391, 120932351, 725594111, 4353564671, 26121388031, 156728328191, 940369969151, 5642219814911, 33853318889471, 203119913336831, 1218719480020991, 7312316880125951, 43873901280755711, 263243407684534271
Offset: 1

Views

Author

Klaus Brockhaus, Aug 16 2009

Keywords

Crossrefs

Cf. A000400 (powers of 6), A024062 (6^n-1), A164560.

Programs

  • Magma
    [ 6^n/3-1: n in [1..20] ];

Formula

a(n) = 6*a(n-1)+5 for n > 2; a(1) = 1, a(2) = 11.
G.f.: x*(1+4*x)/((1-x)*(1-6*x)).

A125682 a(n) = 3*(6^n - 1)/5.

Original entry on oeis.org

3, 21, 129, 777, 4665, 27993, 167961, 1007769, 6046617, 36279705, 217678233, 1306069401, 7836416409, 47018498457, 282110990745, 1692665944473, 10155995666841, 60935974001049, 365615844006297, 2193695064037785, 13162170384226713, 78973022305360281, 473838133832161689
Offset: 1

Views

Author

Zerinvary Lajos, Jan 31 2007

Keywords

Comments

The base-6 numbers 3_6, 33_6, 333_6, 3333_6, 33333_6, 333333_6, ... converted to base 10.
Also the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in Ngaokrajang link. - Jens Ahlström, Aug 29 2023

Examples

			Base 6        Base 10
3 ............. 3 = 3*6^0
33 ........... 21 = 3*6^1 + 3*6^0
333 ......... 129 = 3*6^2 + 3*6^1 + 3*6^0
3333 ........ 777 = 3*6^3 + 3*6^2 + 3*6^1 + 3*6^0, etc.
		

Crossrefs

Programs

  • Magma
    [(6^n-1)*3/5: n in [1..22]]; // Bruno Berselli, Apr 18 2012
  • Maple
    seq((6^n-1)*3/5, n=1..27);
  • Mathematica
    a[n_]:=(6^n-1)*3/5; Table[a[n],{n,1,22}] (* Robert P. P. McKone, Aug 29 2023 *)

Formula

G.f.: 3*x/((1-x)*(1-6*x)). - Bruno Berselli, Apr 18 2012
a(n) = 7*a(n-1) - 6*a(n-2). - Wesley Ivan Hurt, Dec 25 2021
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: 3*exp(x)*(exp(5*x) - 1)/5.
a(n) = 3*A003464(n). (End)

Extensions

Edited by N. J. A. Sloane, Feb 02 2007
Definition rewritten (with Lajos formula) from Bruno Berselli, Apr 18 2012

A164560 Partial sums of A164532.

Original entry on oeis.org

1, 5, 11, 35, 71, 215, 431, 1295, 2591, 7775, 15551, 46655, 93311, 279935, 559871, 1679615, 3359231, 10077695, 20155391, 60466175, 120932351, 362797055, 725594111, 2176782335, 4353564671, 13060694015, 26121388031, 78364164095
Offset: 1

Views

Author

Klaus Brockhaus, Aug 16 2009

Keywords

Comments

Interleaving of A164559 and A024062 without initial term 0.

Crossrefs

Cf. A164532, A164123 (partial sums of A162436), A164559 (6^n/3-1), A024062 (6^n-1), A026549.

Programs

  • Magma
    T:=[ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..28] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];

Formula

a(n) = 6*a(n-2)+5 for n > 2; a(1) = 1, a(2) = 5.
a(n) = (3-(-1)^n)*6^(1/4*(2*n-1+(-1)^n))/2-1.
G.f.: x*(1+4*x)/((1-x)*(1-6*x^2)).
a(n) = A026549(n) - 1.
Previous Showing 11-13 of 13 results.