cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A117294 Number of sequences of length n starting with 1,2 which satisfy a recurrence a(k+1) = floor(c*a(k)) for some constant c.

Original entry on oeis.org

1, 2, 5, 14, 37, 102, 279, 756, 2070, 5609, 15198, 41530, 114049, 315447, 876513, 2446326, 6861432, 19315953, 54556553, 154591186, 439307113, 1251678183, 3574777087, 10231666185, 29343549576, 84309936418, 242651784699, 699476361863, 2019289119525, 5837355573611, 16896103820563, 48963682959055, 142051622347551
Offset: 2

Views

Author

Keywords

Comments

It appears that a(n+1)/a(n) may be converging slowly to 3, but even that it converges is not obvious.
From Martin Fuller, Apr 05 2025: (Start)
Each finite sequence corresponds to a range of c, e.g. (1,2,4,9) has c in [9/4,5/2).
Let x=(maximum element)*(range width of c), e.g. x(1,2,4,9)=9*(5/2 - 9/4)=9/4.
Then the number of extensions of this sequence in a(n+1) is either floor(x)+1 or ceil(x)+1. Non-rigorously, the expected number is x+1.
Also x is bounded 0
Does X have a distribution for large n and approximate c? Can this be used to work out the growth rate of a(n)? (End)

Examples

			a(4) = 5: length 4 sequences are 1,2,4,8; 1,2,4,9; 1,2,5,12; 1,2,5,13; and 1,2,5,14.
		

Crossrefs

Some (infinite) examples of such sequences: A000079, A007051, A076883, A001519, A024537, A024576, A057960.

Programs

  • Racket
    (define (A117294 n) (local ((define (get-ratios seq add?) (cond [(empty? (rest seq)) empty] [else (cons (/ (cond [add? (add1 (first seq))] [else (first seq)]) (second seq)) (get-ratios (rest seq) add?))])) (define (extend-one seq) (local ((define startnext (floor (* (apply max (get-ratios seq false)) (first seq)))) (define endnext (ceiling (* (apply min (get-ratios seq true )) (first seq)))) (define ltodo (build-list (- endnext startnext) (lambda (n) (cons (+ startnext n) seq))))) (cond [(>= (length seq) (sub1 n)) (length ltodo)] [else (apply + (map extend-one ltodo))])))) (extend-one (list 2 1)))) ;; Joshua Zucker, Jun 05 2006

Extensions

More terms from Joshua Zucker, Jun 05 2006
Comment edited by Franklin T. Adams-Watters, May 14 2010
Ambiguous terms a(0), a(1) removed by Max Alekseyev, Jan 18 2012
a(21)-a(24) from Jinyuan Wang, Mar 20 2025
a(25)-a(34) from Martin Fuller, Apr 05 2025

A278476 a(n) = floor((1 + sqrt(2))^3*a(n-1)) for n>0, a(0) = 1.

Original entry on oeis.org

1, 14, 196, 2757, 38793, 545858, 7680804, 108077113, 1520760385, 21398722502, 301102875412, 4236838978269, 59616848571177, 838872718974746, 11803834914217620, 166092561518021425, 2337099696166517569, 32885488307849267390, 462733936006056261028
Offset: 0

Author

Ilya Gutkovskiy, Nov 23 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = floor((1 + sqrt(2))^k*b(n - 1)) with n>0 and b(0) = 1, is (1 - x)/(1 - round((1 + sqrt(2))^k)*x + x^2) if k is nonzero even, and (1 - x - x^2)/((1 - x)*(1 - round((1 + sqrt(2))^k)*x - x^2)) if k is odd or k = 0.

Crossrefs

Cf. A014176.
Cf. similar sequences with recurrence relation b(n) = floor((1 + sqrt(2))^k*b(n-1)) for n>0, b(0) = 1: A024537 (k = 1), A001653 (k = 2), this sequence (k = 3), A077420 (k = 4), A097733 (k = 6).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/((1-x)*(1-14*x-x^2)))); // G. C. Greubel, Oct 10 2018
  • Maple
    seq(coeff(series((1-x-x^2)/((1-x)*(1-14*x-x^2)),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 11 2018
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == Floor[(1 + Sqrt[2])^3 a[n - 1]]}, a, {n, 18}]
    LinearRecurrence[{15, -13, -1}, {1, 14, 196}, 19]
    CoefficientList[Series[(1-x-x^2)/((1-x)*(1-14*x-x^2)), {x,0,50}], x] (* G. C. Greubel, Oct 10 2018 *)
  • PARI
    Vec((1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)) + O(x^50)) \\ G. C. Greubel, Nov 24 2016
    

Formula

G.f.: (1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)).
a(n) = 15*a(n-1) - 13*a(n-2) - a(n-3).
a(n) = ((65 - 52*sqrt(2))*(7 - 5*sqrt(2))^n + 13*(5 + 4*sqrt(2))*(7 + 5*sqrt(2))^n + 10)/140.
Previous Showing 21-22 of 22 results.