A117294 Number of sequences of length n starting with 1,2 which satisfy a recurrence a(k+1) = floor(c*a(k)) for some constant c.
1, 2, 5, 14, 37, 102, 279, 756, 2070, 5609, 15198, 41530, 114049, 315447, 876513, 2446326, 6861432, 19315953, 54556553, 154591186, 439307113, 1251678183, 3574777087, 10231666185, 29343549576, 84309936418, 242651784699, 699476361863, 2019289119525, 5837355573611, 16896103820563, 48963682959055, 142051622347551
Offset: 2
Keywords
A278476 a(n) = floor((1 + sqrt(2))^3*a(n-1)) for n>0, a(0) = 1.
1, 14, 196, 2757, 38793, 545858, 7680804, 108077113, 1520760385, 21398722502, 301102875412, 4236838978269, 59616848571177, 838872718974746, 11803834914217620, 166092561518021425, 2337099696166517569, 32885488307849267390, 462733936006056261028
Offset: 0
Comments
In general, the ordinary generating function for the recurrence relation b(n) = floor((1 + sqrt(2))^k*b(n - 1)) with n>0 and b(0) = 1, is (1 - x)/(1 - round((1 + sqrt(2))^k)*x + x^2) if k is nonzero even, and (1 - x - x^2)/((1 - x)*(1 - round((1 + sqrt(2))^k)*x - x^2)) if k is odd or k = 0.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..869
- Index entries for linear recurrences with constant coefficients, signature (15,-13,-1).
Crossrefs
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/((1-x)*(1-14*x-x^2)))); // G. C. Greubel, Oct 10 2018 -
Maple
seq(coeff(series((1-x-x^2)/((1-x)*(1-14*x-x^2)),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 11 2018
-
Mathematica
RecurrenceTable[{a[0] == 1, a[n] == Floor[(1 + Sqrt[2])^3 a[n - 1]]}, a, {n, 18}] LinearRecurrence[{15, -13, -1}, {1, 14, 196}, 19] CoefficientList[Series[(1-x-x^2)/((1-x)*(1-14*x-x^2)), {x,0,50}], x] (* G. C. Greubel, Oct 10 2018 *)
-
PARI
Vec((1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)) + O(x^50)) \\ G. C. Greubel, Nov 24 2016
Formula
G.f.: (1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)).
a(n) = 15*a(n-1) - 13*a(n-2) - a(n-3).
a(n) = ((65 - 52*sqrt(2))*(7 - 5*sqrt(2))^n + 13*(5 + 4*sqrt(2))*(7 + 5*sqrt(2))^n + 10)/140.
Comments
Examples
Links
Crossrefs
Programs
Racket
Extensions