cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 244 results. Next

A089993 Penultimate prime divisor of numbers that are not powers of primes (A024619).

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 5, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 3, 5, 3, 2, 3, 5, 2, 2, 3, 2, 7, 3, 2, 2, 3, 5, 2, 3, 2, 3, 7, 2, 3, 2, 5, 2, 2, 3, 2, 3, 2, 5, 2, 2, 5, 3, 2, 3, 5, 2, 3, 2, 7, 3, 2, 3, 2, 3, 3, 5, 3, 7, 2, 3, 2, 3, 5, 3, 2, 11, 2, 5, 2, 3, 2, 3, 2, 3, 7, 5
Offset: 1

Views

Author

Cino Hilliard, Jan 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[If[Length[(f = FactorInteger[n])] > 1, f[[-2, 1]], 1], {n, 1, 150}], # > 1 &]
  • PARI
    f(n) = a=factor(n);v=a[,1];ln=length(v);if(ln>1,return(v[ln-1]));
    g(m) = for(x=2,m,if(f(x)>0,print1(f(x)",")))

Formula

a(n) = A076820(A024619(n)). - Amiram Eldar, Apr 12 2021

Extensions

Offset corrected by Amiram Eldar, Apr 12 2021

A109353 a(n) is the sum of the distinct prime divisors of A024619(n).

Original entry on oeis.org

5, 7, 5, 9, 8, 5, 7, 10, 13, 5, 15, 9, 10, 14, 19, 12, 5, 21, 16, 7, 12, 13, 8, 25, 5, 7, 20, 15, 5, 16, 9, 22, 31, 10, 33, 10, 18, 16, 19, 26, 14, 5, 39, 8, 21, 18, 18, 7, 43, 12, 22, 45, 32, 13, 10, 20, 25, 34, 49, 24, 5, 9, 14, 7, 22, 15, 15, 55, 5, 18, 40, 9, 24, 28, 31, 16, 61, 24
Offset: 1

Views

Author

Cino Hilliard, Aug 21 2005

Keywords

Examples

			a(3)=5 because the 3rd non-prime-power is 12 and its prime factors sum to 5.
		

Crossrefs

Cf. A024619.

Programs

  • PARI
    distinct(n) = \sum the distinct prime factors of n { local(a,x,m,ln,s); for(m=2,n, s=0; a=ifactord(m); ln=length(a); if(ln > 1, for(x=1,ln, s+=a[x]; ); print1(s",") ) ) } ifactord(n,m=0) = \distinct prime factors of n { local(f,j,k,flist); flist=[]; f=Vec(factor(n,m)); for(j=1,length(f[1]), flist = concat(flist,f[1][j]) ); return(flist) }

Extensions

Edited by Don Reble, Jul 23 2006

A264762 a(n) is the index of A246946(n) in A024619, integers x that satisfy omega(x) >= 2.

Original entry on oeis.org

1, 3, 6, 10, 13, 2, 7, 20, 26, 34, 5, 23, 44, 55, 17, 21, 4, 12, 31, 41, 16, 67, 8, 36, 50, 25, 29, 38, 9, 22, 54, 70, 30, 113, 14, 63, 86, 42, 47, 11, 28, 66, 85, 37, 136, 19, 76, 106, 61, 65, 15, 39, 90, 116, 48, 64, 79, 69, 73, 18, 45, 102, 133, 60, 207, 32, 117, 164
Offset: 1

Views

Author

Michel Marcus, Nov 23 2015

Keywords

Comments

Is this a permutation of the positive integers?

Examples

			The first 6 terms of A246946 are 6, 12, 18, 24, 30 and 10, that is, the 1st, 3rd, 6th, 10th, 13th and 2nd terms of A024619.
		

Crossrefs

Programs

  • Maple
    N:= 2000: # get all terms before the first term > N.
    W:= Vector(N,t -> if nops(numtheory:-factorset(t))<=1 then 0 else 1 fi):
    WS:= ListTools:-PartialSums(convert(W,list)):
    m:= 1:
    F:= {2,3}:
    A[1]:= WS[6]:
    W[6]:= 0:
    for n from 2 do
      while W[m] = 0 and m < N do m:= m+1 od;
      for k from m to N do
         if W[k] = 1 and nops(numtheory:-factorset(k) intersect F) = 2 then
            A[n]:= WS[k];
            W[k]:= 0;
            F:= numtheory:-factorset(k);
            break
         fi
      od;
      if k > N then break fi;
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Nov 23 2015
  • PARI
    v246946(nn) = {a = 6; fa = (factor(a)[,1])~; va = [a]; vs = va; k = 0; while (k!= nn, k = 1; while (!((#setintersect(fa, (factor(k)[,1])~) == 2) && (! vecsearch(vs, k))), k++); a = k; fa = (factor(a)[,1])~; va = concat(va, k); vs = vecsort(va);); va;}
    v024619(nn) = {va = []; for (n=1, nn, if (omega(n) >= 2, va = concat(va, n));); va;}
    lista(nn) = {v = v246946(nn); w = v024619(vecmax(v)); for (k=1, #v, for (j=1, #w, if (w[j] == v[k], print1(j, ", "); break);););}

A335270 Numbers that are not powers of primes (A024619) whose harmonic mean of their proper unitary divisors is an integer.

Original entry on oeis.org

228, 1645, 7725, 88473, 20295895122, 22550994580
Offset: 1

Views

Author

Amiram Eldar, May 29 2020

Keywords

Comments

Since 1 is the only proper unitary divisor of powers of prime (A000961), they are trivial terms and hence they are excluded from this sequence.
The corresponding harmonic means are 4, 5, 5, 9, 18, 20.
Equivalently, numbers m such that omega(m) > 1 and (usigma(m)-1) | m*(2^omega(m)-1), where usigma is the sum of unitary divisors (A034448), and 2^omega(m) - 1 = A034444(m) - 1 = A309307(m) is the number of the proper unitary divisors of m.
The squarefree terms of A247077 are also terms of this sequence.
a(7) > 10^12, if it exists. - Giovanni Resta, May 30 2020
Conjecture: all terms are of the form n*(usigma(n)-1) where usigma(n)-1 is prime. - Chai Wah Wu, Dec 17 2020

Examples

			228 is a term since the harmonic mean of its proper unitary divisors, {1, 3, 4, 12, 19, 57, 76} is 4 which is an integer.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[10^5], (omega = PrimeNu[#]) > 1 && Divisible[# * (2^omega-1), usigma[#] - 1] &]

Extensions

a(5)-a(6) from Giovanni Resta, May 30 2020

A360529 a(n) is the smallest k > A024619(n) such that rad(k) = rad(A024619(n)), where rad(n) = A007947(n).

Original entry on oeis.org

12, 20, 18, 28, 45, 24, 40, 63, 44, 36, 52, 56, 60, 99, 68, 175, 48, 76, 117, 50, 84, 88, 75, 92, 54, 80, 153, 104, 72, 275, 98, 171, 116, 90, 124, 147, 325, 132, 136, 207, 140, 96, 148, 135, 152, 539, 156, 100, 164, 126, 425, 172, 261, 176, 120, 637, 184, 279, 188, 475, 108, 112, 297, 160, 204, 208
Offset: 1

Views

Author

Michael De Vlieger, May 01 2023

Keywords

Comments

Permutation of A126706.
Let m = A024619(n) and let R_m be the sequence of numbers k such that rad(k) = rad(m). a(n) gives the successor to m in R_m.

Examples

			A024619(1) = 6; the smallest k > 6 such that rad(k) = 6 is a(1) = 12.
A024619(2) = 10; the smallest k > 10 such that rad(k) = 10 is a(2) = 20.
A024619(3) = 12; the smallest k > 12 such that rad(k) = rad(12) = 6 is a(3) = 18.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times@ FactorInteger[x][[All, 1]]; Table[k = m + 1; Function[r, If[SquareFreeQ[m], m*FactorInteger[m][[1, 1]],  While[rad[k] != r, k++]; k]][rad[m]], {m, Select[Range[2, 104], ! PrimePowerQ[#] &]}]

Formula

a(n) = A065642 \ A001597.
Squarefree m implies a(n) = lpf(m)*m = A020639(m)*m.

A381864 Numbers k in A024619 such that p^(m+1) == r (mod k) where r is also in A024619 for all p | n.

Original entry on oeis.org

15, 33, 35, 44, 45, 51, 63, 65, 66, 69, 70, 75, 76, 77, 80, 85, 87, 88, 90, 91, 92, 95, 99, 102, 104, 105, 115, 119, 123, 130, 133, 135, 138, 140, 141, 143, 144, 145, 152, 153, 154, 159, 160, 161, 170, 172, 174, 175, 176, 177, 180, 184, 185, 187, 188, 189, 190
Offset: 1

Views

Author

Michael De Vlieger, Apr 06 2025

Keywords

Comments

This sequence intersects neither A381750 nor A382120.

Examples

			Table of a(n) for n = 1..12, showing prime decomposition (facs(a(n))), p_x^(m+1) mod n, where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Brackets appear around residues that are not prime powers.
                       p_x^(m+1) mod n
 n  a(n)  facs(a(n))   p_1   p_2   p_3
-----------------------------------------
 1   15   3 * 5        12    10
 2   33   3 * 11       15    22
 3   35   5 * 7        20    14
 4   44   2^2 * 11     20    33
 5   45   3^2 * 5      36    35
 6   51   3 * 17       30    34
 7   63   3^2 * 7      18    28
 8   65   5 * 13       60    39
 9   66   2 * 3 * 11   62    15    55
10   69   3 * 23       12    46
11   70   2 * 5 * 7    58    55    63
12   75   3 * 5^2       6    50
		

Crossrefs

Programs

  • Mathematica
    nn = 190, Reap[Do[If[! PrimePowerQ[n], If[NoneTrue[Map[PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ], PrimePowerQ], Sow[n]]], {n, 2, nn}] ][[-1, 1]]

A382120 Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power.

Original entry on oeis.org

10, 18, 20, 21, 22, 26, 28, 30, 34, 36, 38, 40, 42, 46, 48, 50, 52, 54, 55, 57, 58, 60, 68, 72, 74, 78, 82, 84, 86, 93, 94, 96, 98, 100, 106, 108, 110, 111, 114, 116, 117, 118, 122, 124, 126, 129, 132, 134, 136, 142, 146, 147, 148, 150, 156, 158, 162, 164, 165
Offset: 1

Views

Author

Michael De Vlieger, Apr 06 2025

Keywords

Comments

This sequence intersects neither A381750 nor A381864.

Examples

			Table of a(n) for select n, showing prime decomposition (facs(a(n))), p_x^(m+1) mod n, where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Brackets appear around residues that are not prime powers.
                          p_x^(m+1) mod n
 n  a(n)  facs(a(n))      p_1   p_2   p_3
-----------------------------------------
 1   10   2 * 5           [6]    5
 2   18   2 * 3^2        [14]    9
 3   20   2^2 * 5        [12]    5
 4   21   3 * 7           [6]    7
 5   22   2 * 11         [10]   11
 6   26   2 * 13          [6]   13
 7   28   2^2 * 7          4   [21]
 8   30   2 * 3 * 5        2   [21]    5
 9   34   2 * 17         [30]   17
10   36   2^2 * 3^2      [28]    9
11   38   2 * 19         [26]   19
22   60   2^2 * 3 * 5      4   [21]    5
		

Crossrefs

Programs

  • Mathematica
    nn = 165, Reap[Do[If[! PrimePowerQ[n], If[CountDistinct@ Map[Boole@ PrimePowerQ@ PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ] == 2, Sow[n]]], {n, 2, nn}] ][[-1, 1]]

A138296 Table T(k,n) read along antidiagonals: sum of the k-th powers of the distinct prime factors of A024619(n).

Original entry on oeis.org

5, 13, 7, 35, 29, 5, 97, 133, 13, 9, 275, 641, 35, 53, 8, 793, 3157, 97, 351, 34, 5, 2315, 15689, 275, 2417, 152, 13, 7, 6817, 78253, 793, 16839, 706, 35, 29, 10, 20195, 390881, 2315, 117713, 3368, 97, 133, 58, 13, 60073, 1953637, 6817, 823671, 16354, 275, 641
Offset: 1

Views

Author

R. J. Mathar, May 07 2008

Keywords

Comments

Row k=1 is A109353. Rows k=2,3 and 4 are subsequences of A005063-A005065.

Examples

			Upper left corner of the table starting at row k=1, column n=1:
1|......5.......7.......5.......9.......8.......5.......7.
2|.....13......29......13......53......34......13......29.
3|.....35.....133......35.....351.....152......35.....133.
4|.....97.....641......97....2417.....706......97.....641.
5|....275....3157.....275...16839....3368.....275....3157.
6|....793...15689.....793..117713...16354.....793...15689.
7|...2315...78253....2315..823671...80312....2315...78253.
8|...6817..390881....6817.5765057..397186....6817..390881.
		

Programs

  • Maple
    A024619 := proc(n)
        local a;
        if n = 1 then
            RETURN(6);
        else
            for a from A024619(n-1)+1 do
                if A001221(a) > 1 then
                   RETURN(a) ;
                fi ;
            od:
        fi ;
    end:
    A138296 := proc(n,j)
        local f,beta ;
        beta := 0 ;
        for f in ifactors( A024619(n) )[2] do
            beta := beta+op(1,f)^j ;
        od:
        RETURN(beta) ;
    end:
    for d from 1 to 10 do for n from 1 to d do printf("%d,",A138296(n,d-n+1)) ; od: od: # R. J. Mathar, May 07 2008

Formula

T(k,n) = sum_{d in A000040, d| A024619(n)} d^k.

A365789 Position of A365787(n) in A024619.

Original entry on oeis.org

1, 3, 2, 6, 10, 4, 7, 17, 5, 25, 29, 12, 20, 42, 8, 9, 26, 61, 69, 23, 11, 31, 48, 96, 13, 22, 111, 64, 14, 44, 134, 15, 16, 154, 36, 28, 62, 18, 19, 72, 109, 210, 21, 34, 54, 240, 139, 89, 24, 288, 39, 181, 329, 27, 55, 66, 137, 45, 374, 30, 99, 161, 236, 32
Offset: 1

Views

Author

Michael De Vlieger, Sep 19 2023

Keywords

Comments

Permutation of natural numbers.

Examples

			Let b(n) = A286708(n), rad(n) = A007947(n), and c(n) = A024619(n).
a(1) = 1 since b(1)/rad(b(1)) = 36/6 = 6 = c(1).
a(2) = 3 since b(2)/rad(b(2)) = 72/6 = 12 = c(3).
a(3) = 2 since b(3)/rad(b(3)) = 100/10 = 10 = c(2).
a(4) = 6 since b(4)/rad(b(4)) = 108/6 = 18 = c(6).
a(5) = 10 since b(5)/rad(b(5)) = 144/6 = 24 = c(10).
a(6) = 4 since b(6)/rad(b(6)) = 196/14 = 14 = c(4), etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 3600;
    s = Rest@
      Select[Union@ Flatten@
       Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
       Not @* PrimePowerQ];
    t = Select[Range[2, nn], Not @* PrimePowerQ];
    Map[FirstPosition[t, #/(Times @@ FactorInteger[#][[All, 1]])][[1]] &, s]

A382438 Numbers k in A024619 such that all residues r (mod k) in row k of A381801 are such that rad(r) divides k, where rad = A007947.

Original entry on oeis.org

6, 12, 14, 24, 39, 62, 155, 254, 3279, 5219, 16382, 19607, 70643, 97655, 208919, 262142, 363023, 402233, 712979, 1040603, 1048574, 1508597, 2265383, 2391483, 4685519, 5207819, 6728903, 21243689, 25239899, 56328959, 61035155, 67977559, 150508643
Offset: 1

Views

Author

Michael De Vlieger, Mar 27 2025

Keywords

Comments

Numbers k in A024619 such that A381804(k) = 0.
Let S(n,p) be the set of distinct power residues r (mod n) beginning with empty product and recursively multiplying by prime p | n. For example, S(10,2) = {1,2,4,8,6}.
This sequence builds on A381750, taking the tensor product T(k) (mod k) of S(k,p), p | k. If all products r (mod k) are such that rad(r) | k, then k is in this sequence. Distinct residues r (mod k) in T(k) are listed in row k of A381801.
Proper subset of A381750.
A139257 is a proper subset since 2^m is congruent to 2 (mod 2^m-2).
Conjecture: 12 and 24 are the only nonsquarefree numbers in this sequence, i.e., in A126706.

Examples

			Table of a(n) for n = 1..10, showing prime decomposition (facs(a(n))), row a(n) of A381801:
                        Row a(n) of A381801
 n    a(n)  facs(a(n))  k (mod a(n)) such that rad(k) | a(n).
-------------------------------------------------------------
 1      6   2 * 3       {0, 1, 2, 3, 4}
 2     12   2^2 * 3     {0, 1, 2, 3, 4, 6, 8, 9}
 3     14   2 * 7       {0, 1, 2, 4, 7, 8}
 4     24   2^3 * 3     {0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18}
 5     39   3 * 13      {0, 1, 3, 9, 13, 27}
 6     62   2 * 31      {0, 1, 2, 4, 8, 16, 31, 32}
 7    155   5 * 31      {0, 1, 5, 25, 31, 125}
 8    254   2 * 127     {0, 1, 2, 4, 8, 16, 32, 64, 127, 128}
 9   3279   3 * 1093    {0, 1, 3, 9, 27, 81, 243, 729, 1093, 2187}
10   5219   17 * 307    {0, 1, 17, 289, 307, 4913}
Let b = A381750.
a(1) = 6 since T(6) (mod 6) = {1,2,4} X {1,3} = {{1,2,4},{3,0,0}}; all residues r (mod 6) in T(6) (i.e., in row 6 of A381801) are such that rad(r) | 6.
a(2) = 12 since T(12) (mod 12) = {1,2,4,8} X {1,3,9} = {{1,2,4,8},{3,6,0,0},{9,6,0,0}}; all residues r (mod 12) in T(12) are such that rad(r) | 12.
a(3) = 14 since T(14) (mod 14) = {1,2,4,8} X {1,7} = {{1,2,4,8},{7,0,0,0}}; all residues r (mod 14) in T(14) are such that rad(r) | 14.
a(4) = 24 since T(24) (mod 24) = {1,2,4,8,16} X {1,3,9} = {{1,2,4,8,16},{3,6,12,0,0},{9,18,0,0,0}}; all residues r (mod 24) in T(24) are such that rad(r) | 24.
b(6) = 56 is not in the sequence since 49*2 = 98 = 42 (mod 56), rad(42) does not divide 56.
b(8) = 112 is not in the sequence since 49*4 = 196 = 84 (mod 112), rad(84) does not divide 112, etc.
		

Crossrefs

Previous Showing 11-20 of 244 results. Next