cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A291553 Column 3 of A060244.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 13, 22, 35, 54, 81, 121, 174, 250, 352, 491, 675, 924, 1246, 1674, 2226, 2944, 3862, 5046, 6541, 8449, 10846, 13869, 17641, 22365, 28214, 35485, 44443, 55494, 69036, 85650, 105894, 130594, 160561, 196923, 240847, 293907, 357722, 434477, 526448
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; col = 3; Flatten[{0, 0, CoefficientList[Coefficient[Normal[Series[Product[Product[1/(1 - x^(i - j)*y^j), {j, 0, i}], {i, 2, nmax + col}], {x, 0, col}, {y, 0, nmax}]], x^col], y]}]
    nmax = 50; Rest[CoefficientList[Series[(x^3 * (1 + x - x^4))/((1-x)^2 * (1+x) * (1 + x + x^2)) / QPochhammer[x], {x, 0, nmax}], x]]
    Table[Sum[(Floor[k/2] - Floor[(k-1)/3]) * PartitionsP[n-k], {k, 3, n}], {n, 1, 50}]

Formula

G.f.: x^3 * (1 + x - x^4) / ((1 - x)^2 * (1 + x) * (1 + x + x^2)) * Product_{k>=1} 1/(1 - x^k).
a(n) = Sum_{k=3..n} (floor(k/2) - floor((k-1)/3)) * A000041(n-k).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*Pi^2).
a(n) ~ n * A000041(n) / Pi^2.

A301313 a(n) = Sum_{p in P} binomial(H(2,p),2), where P is the set of partitions of n, and H(2,p) = number of hooks of size 2 in p.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 6, 7, 18, 24, 49, 66, 116, 158, 255, 346, 525, 707, 1030, 1374, 1936, 2560, 3519, 4608, 6207, 8056, 10673, 13735, 17942, 22906, 29569, 37469, 47864, 60235, 76249, 95335, 119705, 148770, 185447, 229182, 283810, 348903, 429498, 525411, 643244
Offset: 0

Views

Author

Emily Anible, Apr 03 2018

Keywords

Comments

This sequence is part of the contribution to the quadratic b^2 term of a 2-truncation of the Han/Nekrasov-Okounkov hooklength formula (2-truncation here being the limiting of hook sizes counted by the formula to only those of size 1 or 2). Exploring this sequence may lead to more general formulas regarding the hooklength formula for larger hooks, or the entire contribution to the quadratic term of the formula.

Examples

			For n=6, we sum over the partitions of 6. For each partition, we calculate binomial(number of hooks of size 2 in partition, 2):
6............binomial(1,2) = 0
5,1..........binomial(1,2) = 0
4,2..........binomial(2,2) = 1
4,1,1........binomial(2,2) = 1
3,3..........binomial(2,2) = 1
3,2,1........binomial(0,2) = 0
3,1,1,1......binomial(2,2) = 1
2,2,2........binomial(2,2) = 1
2,2,1,1......binomial(2,2) = 1
2,1,1,1,1....binomial(1,2) = 0
1,1,1,1,1,1..binomial(1,2) = 0
------------------------------
Total........................6
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, l) option remember; `if`(n=0, p*(p-1)/2,
          `if`(i>n, 0, b(n, i+1, p, 1)+add(b(n-i*j, i+1, p+
          `if`(j>1, 1, 0)+l, 0), j=1..n/i)))
        end:
    a:= n-> b(n, 1, 0$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    b[n_, i_, p_, l_] := b[n, i, p, l] = If[n == 0, p*(p-1)/2, If[i > n, 0, b[n, i+1, p, 1] + Sum[b[n-i*j, i+1, p+If[j>1, 1, 0]+l, 0], {j, 1, n/i}]] ];
    a[n_] := b[n, 1, 0, 0];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
    Table[Sum[(2*k - 5 - (-1)^(k/2))*(1 + (-1)^k)/4 * PartitionsP[n-k], {k, 1, n}], {n, 0, 60}] (* Vaclav Kotesovec, Oct 06 2018 *)

Formula

G.f.: (q^4+3*q^6)/((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j). - Emily Anible, May 18 2018
a(n) ~ sqrt(3) * exp(Pi*sqrt((2*n)/3)) / (4*Pi^2). - Vaclav Kotesovec, Oct 06 2018

Extensions

a(10)-a(44) from Alois P. Heinz, Apr 03 2018

A302300 a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and the k_j are the frequencies in p.

Original entry on oeis.org

0, 1, 1, 5, 6, 12, 21, 33, 50, 79, 116, 169, 246, 346, 487, 675, 927, 1254, 1702, 2263, 3014, 3966, 5210, 6766, 8795, 11303, 14531, 18521, 23583, 29803, 37654, 47231, 59206, 73792, 91867, 113778, 140788, 173377, 213289, 261318, 319764, 389846, 474745, 576164
Offset: 0

Views

Author

Emily Anible, Apr 04 2018

Keywords

Comments

This sequence is part of the contribution to the b^2 term of C_{1-b,2}(q) for(1-b,2)-colored partitions - partitions in which we can label parts any of an indeterminate 1-b colors, but are restricted to using only 2 of the colors per part size. This formula is known to match the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two up to the linear term in b.
It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually.

Examples

			For a(6), we sum over partitions of six. For each partition, we count 1 for each part which appears once, then square the total in each partition.
   6............1^2 = 1
   5,1..........2^2 = 4
   4,2..........2^2 = 4
   4,1,1........1^2 = 1
   3,3..........0^2 = 0
   3,2,1........3^2 = 9
   3,1,1,1......1^2 = 1
   2,2,2........0^2 = 0
   2,2,1,1......0^2 = 0
   2,1,1,1,1....1^2 = 1
   1,1,1,1,1,1..0^2 = 0
   --------------------
   Total.............21
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (
          `if`(n=1, 1, 0)+p)^2, add(b(n-i*j, i-1,
          `if`(j=1, 1, 0)+p), j=0..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    Array[Total@ Map[Count[Split@ #, ?(Length@ # == 1 &)]^2 &, IntegerPartitions[#]] &, 43] (* _Michael De Vlieger, Apr 05 2018 *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (
         If[n == 1, 1, 0] + p)^2, Sum[b[n - i*j, i - 1,
         If[j == 1, 1, 0] + p], {j, 0, n/i}]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
  • Python
    def frequencies(partition, n):
        tot = 0
        freq_list = []
        i = 0
        for p in partition:
            freq = [0 for i in range(n+1)]
            for i in p:
                freq[i] += 1
            for f in freq:
                if f == 0:
                    tot += 1
            freq_list.append(freq)
        return freq_list
    def sum_square_freqs_of_one(freq_part):
        tot = 0
        for f in freq_part:
            count = 0
            for i in f:
                if i == 1:
                    count += 1
            tot += count*count
        return tot
    import sympy.combinatorics
    def A302300(n): # rewritten by R. J. _Mathar, 2023-03-24
        a =0
        if n ==0 :
            return 0
        part = sympy.combinatorics.IntegerPartition([n])
        partlist = []
        while True:
            part = part.next_lex()
            partlist.append(part.partition)
            if len(part.partition) <=1 :
                break
        freq_part = frequencies(partlist, n)
        return sum_square_freqs_of_one(freq_part)
    for n in range(20): print(A302300(n))

Formula

a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and k_j are the frequencies in p.

A330040 Number of non-isomorphic cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_n.

Original entry on oeis.org

1, 1, 3, 19, 748, 2027309
Offset: 1

Views

Author

Torsten Muetze, Nov 28 2019

Keywords

Examples

			For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are four essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}. The cover graph of the first one is a 6-cycle, the cover graph of the middle two is a 5-cycle, and the cover graph of the last one is a 4-cycle. These are 3 non-isomorphic graphs, showing that a(3)=3.
		

Crossrefs

A330042 Number of non-isomorphic regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_n.

Original entry on oeis.org

1, 1, 3, 10, 51, 335, 2909
Offset: 1

Views

Author

Torsten Muetze, Nov 28 2019

Keywords

Examples

			For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are four essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}. The cover graph of the first one is a 6-cycle, the cover graph of the middle two is a 5-cycle, and the cover graph of the last one is a 4-cycle. These are 3 non-isomorphic regular graphs, showing that a(3)=3.
		

Crossrefs

A179385 The n-th term is the sum of all the 1's generated from all the combinations of prime numbers and ones possible, that add to n, when each prime is only allowed once and any number of ones are allowed.

Original entry on oeis.org

1, 2, 4, 7, 10, 15, 20, 27, 35, 44, 55, 67, 81, 97, 115, 135, 158, 183, 212, 244, 280, 320, 364, 413, 467, 526, 591, 661, 737, 820, 909, 1007, 1112, 1226, 1349, 1481, 1624, 1778, 1943, 2121, 2311, 2515, 2734, 2968, 3219, 3486, 3771, 4075, 4399, 4744, 5112, 5502
Offset: 1

Views

Author

Joseph Foley, Jul 12 2010

Keywords

Examples

			n=7 gives 11111 11, 2111 11, 311 11, 5 11, 5 2, 32 11. (Grouped in 5's) no. of 1's: 7, 5, 4, 2, 0, 2. Sum is 20, therefore a(7) = 20.
n=12 gives 11111 11111 11, 11111 11111 2, 11111 311 11, 11111 32 11, 11111 5 11, 5 2111 11, 5 311 11, 5 32 11, 7111 11, 721 11, 73 11, 73 2, 75, eleven 1, no. of 1's: 12, 10, 9, 7, 7, 5, 4, 2, 5, 3, 2, 0, 0, 1. Sum is 67, therefore a(12) = 67.
1: 1 => 1 2: 11, 2 => 2 3: 111, 21 => 4 4: 1111, 211, 22, 31 => 7 5: 11111, 2111, 311, 23 => 10 6: 11111 1, 2111 1, 311 1, 23 1, 5 1 => 15 and so on.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; if n<=0 then 0 elif i=0 then n else b(n, i-1) +b(n-ithprime(i), i-1) fi end: # R. J. Mathar, Jul 14 2010
    a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=1..80); # Alois P. Heinz
  • Mathematica
    fQ[lst_List] := Sort@ Flatten@ Most@ Split@ lst == Rest@ Union@ lst; f[n_] := Sum[ Count[ Select[ IntegerPartitions[n, {k}, Join[{1}, Prime@ Range@ PrimePi@n]], fQ@# &], 1, 2], {k, n}]; Array[f, 50] (* improved by Robert G. Wilson v, Jul 20 2010 *)
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[Prime[i] > n, 0, b[n - Prime[i], i - 1]]]];
    a[n_] := Sum[k*b[n - k, PrimePi[n - k]], {k, 1, n}];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
  • PARI
    a(n) = my(r); r = x/(1-x)^2 + O(x^(n+1)); forprime(p=2,n,r*=1+x^p); polcoeff(r,n) \\ Max Alekseyev, Jul 14 2010

Formula

a(n) = Sum_{k=1..n} k * A000586(n-k). - Max Alekseyev, Jul 14 2010

Extensions

Corrected and extended by R. J. Mathar, Jul 14 2010

A276426 Triangle read by rows: T(n,k) is the number of integer partitions of n having k distinct odd parts (n>=0).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 3, 2, 2, 1, 0, 6, 1, 3, 5, 3, 0, 11, 4, 5, 8, 9, 0, 20, 9, 1, 7, 15, 19, 1, 0, 32, 21, 3, 11, 24, 38, 4, 0, 51, 41, 9, 15, 39, 69, 12, 0, 80, 73, 23, 22, 58, 123, 27, 1, 0, 119, 128, 49, 1, 30, 90, 202, 60, 3, 0, 175, 213, 98, 4, 42, 130, 328, 118, 9
Offset: 0

Views

Author

Emeric Deutsch, Sep 19 2016

Keywords

Comments

Sum of entries in row n = A000041(n).
T(2n,0) = A000041(n); T(2n+1,0) = 0.
Sum(k*T(n,k), k>=0) = A024786(n+1).

Examples

			T(4,0) = 2 because we have [4], [2,2];
T(4,1) = 2 because we have [1,1,2], [1,1,1,1];
T(4,2) = 1 because we have [1,3];
Triangle starts:
1;
0,1;
1,1;
0,3;
2,2,1.
		

Crossrefs

Programs

  • Maple
    G := product((1-x^(2*j-1)+t*x^(2*j-1))/(1-x^j), j = 1 .. 100): Gser := simplify(series(G, x = 0, 32)); for n from 0 to 27 do P[n] := sort(coeff(Gser, x, n)) end do: for n from 0 to 27 do seq(coeff(P[n], t, i), i = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j>0 and i::odd, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..25);  # Alois P. Heinz, Sep 20 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*If[j > 0 && OddQ[i], x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1} ((1-(1-t)*x^{2*j-1})/(1-x^j)).

A302348 a(n) = Sum_{p in P} (H(2,p)^2)/2, where P is the set of partitions of n, and H(2,p) is the number of hooks of length 2 in p.

Original entry on oeis.org

0, 0, 1, 1, 4, 5, 14, 18, 37, 50, 90, 122, 199, 270, 415, 559, 820, 1096, 1556, 2060, 2847, 3736, 5057, 6576, 8747, 11279, 14788, 18916, 24493, 31097, 39838, 50225, 63737, 79833, 100471, 125076, 156237, 193394, 239956, 295443, 364334, 446349, 547360, 667440
Offset: 0

Views

Author

Emily Anible, Apr 05 2018

Keywords

Comments

This sequence is part of the contribution to the b^2 term of the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two.
It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually.

Examples

			For a(6), we sum over partitions of six. For each partition, we count 1 for each hook of length 2, then square the total in each partition. We divide the final result in half to get a(6).
6............1^2 = 1
5,1..........1^2 = 1
4,2..........2^2 = 4
4,1,1........2^2 = 4
3,3..........2^2 = 4
3,2,1........0^2 = 0
3,1,1,1......2^2 = 4
2,2,2........2^2 = 4
2,2,1,1......2^2 = 4
2,1,1,1,1....1^2 = 1
1,1,1,1,1,1..1^2 = 1
--------------------
Total.............28/2=14
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, l) option remember; `if`(n=0, p^2,
          `if`(i>n, 0, b(n, i+1, p, 1)+add(b(n-i*j, i+1, p+
          `if`(j>1, 1, 0)+l, 0), j=1..n/i)))
        end:
    a:= n-> b(n, 1, 0$2)/2:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 06 2018
  • Mathematica
    b[n_, i_, p_, l_] := b[n, i, p, l] = If[n == 0, p^2, If[i > n, 0, b[n, i + 1, p, 1] + Sum[b[n - i*j, i+1, p + If[j > 1, 1, 0]+l, 0], {j, 1, n/i}]]];
    a[n_] := b[n, 1, 0, 0]/2;
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)

Formula

G.f: (q^2*(1+q^2+2*q^4))/((1-q^2)*(1-q^4)*Product_{i>0} (1-q^i)).

A316861 a(n) = Sum_{p in P} y(1)*y(2), where P is the set of partitions of n, and y(k) is the number of parts with multiplicity at least k in p.

Original entry on oeis.org

0, 0, 1, 1, 4, 7, 13, 22, 38, 58, 93, 139, 208, 302, 438, 616, 869, 1200, 1650, 2239, 3026, 4038, 5374, 7081, 9292, 12103, 15704, 20236, 25992, 33191, 42237, 53490, 67524, 84860, 106341, 132736, 165212, 204928, 253518, 312629, 384585, 471734, 577276, 704584, 858078
Offset: 0

Views

Author

Emily Anible, Jul 15 2018

Keywords

Comments

Also (1/2)*Sum_{p in P} H(1)*H(2), where P is the set of partitions of n, and H(k) is the number of k-hooks in p.

Examples

			For n=6, we sum over the partitions of 6. For each partition, we count the parts with multiplicity at least one, and those of at least two.
6............y(1)*y(2) = 1*0 = 0
5,1..........y(1)*y(2) = 2*0 = 0
4,2..........y(1)*y(2) = 2*0 = 0
4,1,1........y(1)*y(2) = 2*1 = 2
3,3..........y(1)*y(2) = 1*1 = 1
3,2,1........y(1)*y(2) = 3*0 = 0
3,1,1,1......y(1)*y(2) = 2*1 = 2
2,2,2........y(1)*y(2) = 1*1 = 1
2,2,1,1......y(1)*y(2) = 2*2 = 4
2,1,1,1,1....y(1)*y(2) = 2*1 = 2
1,1,1,1,1,1..y(1)*y(2) = 1*1 = 1
--------------------------------
Total.........................13
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, x, y) option remember;
         `if`(n=0, x*y, `if`(i<1, 0, add(b(n-i*j, i-1,
         `if`(j>0, 1, 0)+x, `if`(j>1, 1, 0)+y), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jul 30 2018
  • Mathematica
    Array[Total[
       Count[Split@#, (_?(Length@# >= 1 &))] Count[
           Split@#, (_?(Length@# >= 2 &))] & /@
        IntegerPartitions[#]] &, 50]
    (* Second program: *)
    b[n_, i_, x_, y_] := b[n, i, x, y] = If[n == 0, x*y, If[i < 1, 0, Sum[b[n - i*j, i - 1, If[j > 0, 1, 0] + x, If[j > 1, 1, 0] + y], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz *)
  • PARI
    seq(n)={Vec(x*(1 + x^2 + x^3)/((1 - x)^2*(1 + x)*(1 + x + x^2)*prod(i=1, n-1, 1 - x^i + O(x^n))) + O(x^n), -n)} \\ Andrew Howroyd, Jul 15 2018

Formula

G.f.: (q^3/((1-q)(1-q^2)) + q^2/(1-q^2) - q^3/(1-q^3))*Product_{j>=1} 1/(1-q^j).
a(n) = A000097(n+3) + A116646(n).
In general, Sum_{n>=0} q^n Sum_{p in P} y(s)*y(t) for s < t is given by (q^(s+t)/((1-q^s)(1-q^t)) + q^t/(1-q^t) - q^(s+t)/(1-q^(s+t))) * Product_{j>=1} 1/(1-q^j).

A141450 Upper right triangle of the number of m's in all partitions of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 3, 7, 1, 1, 2, 4, 12, 1, 1, 2, 4, 8, 19, 1, 1, 2, 3, 6, 11, 30, 1, 1, 2, 3, 6, 9, 19, 45, 1, 1, 2, 3, 5, 8, 15, 26, 67, 1, 1, 2, 3, 5, 8, 13, 21, 41, 97, 1, 1, 2, 3, 5, 7, 12, 18, 31, 56, 139, 1, 1, 2, 3, 5, 7, 12, 17, 28, 45, 83, 195, 1, 1, 2, 3, 5, 7, 11, 16, 25, 38, 63
Offset: 1

Views

Author

Robert G. Wilson v, Aug 07 2008

Keywords

Comments

The "last" column read from the bottom is A000041.
Mirror of triangle A066633. - Omar E. Pol, May 01 2012

Examples

			A000070: 1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, ...,
A024786: 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 112, 160, 213, ...,
A024787: 0, 0, 1, 1, 2, 4, 6, 9, 15, 21, 31, 45, 63, 87, 122, ...,
A024788: 0, 0, 0, 1, 1, 2, 3, 6, 8, 13, 18, 28, 38, 55, 74, ...,
A024789: 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 50, ...,
A024790: 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 16, 24, 33, ...,
A024791: 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 16, 23, ...,
A024792: 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, ...,
A024793: 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, ...,
A024794: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, ...
		

Crossrefs

Programs

  • Mathematica
    (* First do ) Needs["Combinatorica`"] (* then *) f[n_, m_] := Count[Flatten@ Partitions@ n, m]; Table[ f[n, m], {n, 13}, {m, n, 1, -1}]
Previous Showing 31-40 of 41 results. Next