cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A280366 G.f.: Product_{k>=1} (1 + x^(k*(k+1)/2)) / (1 - x^(k*(k+1)/2)).

Original entry on oeis.org

1, 2, 2, 4, 6, 6, 10, 14, 14, 20, 28, 30, 38, 50, 54, 66, 86, 94, 110, 138, 152, 178, 218, 238, 274, 330, 362, 412, 488, 534, 602, 710, 778, 864, 1006, 1102, 1220, 1410, 1542, 1696, 1940, 2122, 2328, 2638, 2878, 3148, 3550, 3870, 4214, 4722, 5136, 5580, 6230
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2017

Keywords

Comments

Convolution of A024940 and A007294.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1+x^(k*(k+1)/2))/(1-x^(k*(k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3 * 2^(-4/3) * Pi^(1/3) * ((2*sqrt(2)-1) * Zeta(3/2))^(2/3) * n^(1/3)) * Zeta(3/2) * (2*sqrt(2)-1) / (32 * sqrt(3) * Pi * n^(3/2)).

A279278 Expansion of Product_{k>=1} (1 + x^(k*(k+1)*(k+2)/6)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct tetrahedral numbers (A000292).

Examples

			a(35) = 2 because we have [35] and [20, 10, 4, 1].
		

Crossrefs

Cf. A000292, A007294, A024940, A068980, A350205 (positions of records).

Programs

  • Mathematica
    nmax=120; CoefficientList[Series[Product[1 + x^(k (k + 1) (k + 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(k+1)*(k+2)/6)).

A279281 Expansion of Product_{k>=1} (1 + x^(k*(3*k-2))).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct octagonal numbers (A000567).

Examples

			a(105) = 2 because we have [96, 8, 1] and [65, 40].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(3*k-2))).

A279279 Expansion of Product_{k>=1} (1 + x^(k*(2*k-1))).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct hexagonal numbers (A000384).

Examples

			a(67) = 2 because we have [66, 1] and [45, 15, 6, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(2*k-1))).

A279280 Expansion of Product_{k>=1} (1 + x^(k*(5*k-3)/2)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct heptagonal numbers (A000566).

Examples

			a(81) = 2 because we have [81] and [55, 18, 7, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(5*k-3)/2)).

A281081 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 1, 0, 0, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered triangular numbers (A005448).

Examples

			a(46) = 2 because we have [46] and [31, 10, 4, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

A307666 Number of partitions of n into consecutive positive triangular numbers.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2019

Keywords

Comments

Equivalently, number of ways n can be expressed as the difference between two tetrahedral numbers. - Charlie Neder, Apr 24 2019
Records: a(10)=2, a(2180)=3, a(10053736)=4. - Robert Israel, Aug 20 2019

Examples

			10 = 1 + 3 + 6, so a(10) = 2.
		

Crossrefs

Programs

  • Maple
    N:= 100:
    V:= Vector(N):
    for i from 1 while i*(i+1)/2 <= N do
      s:= i*(i+1)*(i+2)/6;
      for j from i-1 to 0 by -1 do
        t:= j*(j+1)*(j+2)/6;
        if s-t > N then break fi;
        V[s-t]:= V[s-t]+1
      od;
    od:
    convert(V,list); # Robert Israel, Aug 20 2019

Formula

G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k*(k+1)/2).

A292519 Expansion of Product_{k>=1} 1/(1 + x^(k*(k+1)/2)).

Original entry on oeis.org

1, -1, 1, -2, 2, -2, 2, -2, 2, -2, 1, -1, 2, -1, 1, -3, 3, -3, 4, -4, 5, -6, 5, -6, 8, -6, 6, -8, 6, -6, 7, -5, 6, -7, 5, -7, 9, -7, 9, -11, 9, -11, 13, -10, 12, -15, 12, -14, 16, -13, 15, -15, 11, -14, 15, -11, 15, -18, 15, -19, 23, -21, 25, -27, 24, -28, 28, -24, 28, -29, 24, -28, 31, -25, 29, -33, 30, -35, 36, -35, 42
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

Convolution inverse of A024940.
The difference between the number of partitions of n into an even number of triangular numbers and the number of partitions of n into an odd number of triangular numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1 + x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 + x^(k*(k+1)/2)).

A339375 Number of partitions of n into an even number of distinct triangular numbers.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 0, 2, 0, 3, 1, 0, 2, 1, 1, 1, 3, 1, 2, 0, 2, 2, 0, 2, 3, 3, 1, 2, 2, 2, 2, 2, 1, 4, 4, 1, 3, 2, 3, 2, 3, 1, 5, 4, 2, 4, 2, 4, 4, 3, 2, 6, 4, 3, 4, 5, 2, 3, 6, 5, 6, 5, 4, 5, 5, 4, 5, 6, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(31) = 3 because we have [28, 3], [21, 10] and [21, 6, 3, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[(1/2) (Product[(1 + x^(k (k + 1)/2)), {k, 1, nmax}] + Product[(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 + x^(k*(k + 1)/2)) + Product_{k>=1} (1 - x^(k*(k + 1)/2))).
a(n) = (A024940(n) + A292518(n)) / 2.

A339376 Number of partitions of n into an odd number of distinct triangular numbers.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 3, 0, 1, 1, 2, 0, 1, 2, 1, 3, 0, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 3, 2, 0, 4, 3, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 3, 4, 4, 4, 1, 5, 4, 2, 3, 5, 3, 6, 4, 2, 6, 4, 3, 5, 6, 5, 5, 5, 5, 5, 4, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(28) = 3 because we have [28], [21, 6, 1] and [15, 10, 3].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[(1/2) (Product[(1 + x^(k (k + 1)/2)), {k, 1, nmax}] - Product[(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 + x^(k*(k + 1)/2)) - Product_{k>=1} (1 - x^(k*(k + 1)/2))).
a(n) = (A024940(n) - A292518(n)) / 2.
Previous Showing 11-20 of 42 results. Next