cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A345497 Numbers that are the sum of eight squares in ten or more ways.

Original entry on oeis.org

70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			71 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 8^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 4^2
   = 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2
   = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 7^2
   = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 5^2
   = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 + 5^2
   = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 6^2
   = 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
   = 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2
so 71 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])
    
  • Python
    def A345397(n): return (70, 71, 73, 74, 77, 78, 79, 80, 82, 83)[n-1] if n<11 else n+74 # Chai Wah Wu, May 09 2024

Formula

From Chai Wah Wu, May 09 2024: (Start)
All integers >= 85 are terms. Proof: since 594 can be written as the sum of 3 positive squares in 10 ways (see A025427) and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 628 can be written as a sum of 8 positive squares in 10 or more ways. Integers from 85 to 627 are terms by inspection.
a(n) = 2*a(n-1) - a(n-2) for n > 12.
G.f.: x*(-x^11 + x^10 - x^9 + x^8 - 2*x^5 + 2*x^4 - x^3 + x^2 - 69*x + 70)/(x - 1)^2. (End)

A321457 Expansion of Product_{1 <= i <= j <= k} (1 + x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 3, 3, 1, 4, 4, 2, 5, 4, 3, 7, 7, 5, 9, 10, 7, 11, 14, 9, 15, 19, 12, 22, 23, 17, 30, 29, 23, 41, 37, 32, 54, 46, 45, 68, 59, 63, 85, 79, 85, 107, 103, 108, 136, 136, 139, 174, 177, 178, 222, 225, 226, 287, 282, 290
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A025427(k).

A321458 Expansion of Product_{1 <= i <= j <= k} (1 - x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 2, 0, 1, -1, -1, 2, 0, 0, 1, 0, 3, -3, -1, 1, -1, 4, -1, 1, 0, -5, 1, -1, 0, 0, -1, 5, -2, -7, -1, -1, 5, 0, 0, 2, -5, -2, -3, 1, 3, -3, 5, 1, -3, -8, -4, 16, 1, 4, -1, 2, 4, -17, 4, 5, 2, 10, -6, 10, -7, -23, 18, 3, 12
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 - x^k)^A025427(k).

A321459 Expansion of Product_{1 <= i <= j <= k} 1/(1 - x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 5, 0, 2, 6, 0, 4, 10, 1, 6, 13, 3, 10, 19, 5, 15, 26, 10, 23, 37, 16, 32, 52, 26, 48, 74, 38, 70, 100, 59, 101, 138, 85, 144, 189, 126, 204, 256, 180, 284, 345, 262, 392, 468, 372, 537, 629, 522, 730, 847, 723, 992, 1134, 998, 1336
Offset: 0

Views

Author

Seiichi Manyama, Nov 10 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} 1/(1 - x^k)^A025427(k).

A306396 Consider the numbers in A024796, numbers expressible in more than one way as i^2 + j^2 + k^2, where 1 <= i <= j <= k; sequence number of ways these numbers can be expressed.

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 3, 2, 4, 2, 2, 2, 4, 3, 2, 2, 3, 2, 4, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 5, 2, 2, 4, 4, 2, 2, 5, 6, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 5, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 4, 2, 4, 4, 4, 3, 2, 4, 2, 3, 5, 2, 5, 4, 2
Offset: 1

Views

Author

A. Timothy Royappa, Feb 12 2019

Keywords

Comments

Number of accidental degeneracies in the quantum mechanical 3-D "particle-in-a-box" model.

Examples

			The fourth term in A024796 is 41, which can be expressed in two ways as the sum of three nonzero squares (1^2 + 2^2 + 6^2 or 3^2 + 4^2 + 4^2), so a(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Length@ IntegerPartitions[n, {3}, Range[Sqrt[n]]^2]; Select[ Array[r, 300], # > 1 &] (* Giovanni Resta, Feb 21 2020 *)

Formula

a(n) = A025427(A024796(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Feb 20 2020

A152829 Numbers k whose squares can be written in exactly one way as a sum of three squares: k^2 = a^2 + b^2 + c^2 with 1 <= a <= b <= c.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 24, 26, 28, 48, 52, 56, 96, 104, 112, 192, 208, 224, 384, 416, 448, 768, 832, 896, 1536, 1664, 1792, 3072, 3328, 3584, 6144, 6656, 7168, 12288, 13312, 14336, 24576, 26624, 28672, 49152, 53248, 57344, 98304, 106496, 114688, 196608, 212992, 229376
Offset: 1

Views

Author

Peter Pein (petsie(AT)dordos.net), Dec 13 2008

Keywords

Comments

Numbers k such that k^2 is in A025321. - Joerg Arndt, Mar 22 2022
2k is a term iff k is also a term, so the conjecture from Colin Barker (see Formula) is true iff 3, 7, and 13 are the only odd terms. - Jon E. Schoenfield, Mar 22 2022

Examples

			9 is not in this sequence because 9^2 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2.
7 is in this sequence because 7^2 = 2^2 + 3^2 + 6^2 is the only way to write 7^2 as a sum of three squares.
		

Crossrefs

Cf. A025321.

Programs

  • C
    #include 
    #include 
    int main (int argc, char *argv[]) {
        long n,n2,a,a2,b,b2,c,c2; int s = 0; n=atol(argv[1]); n2=n*n;
        for (a=1; a 3sq.txt
    # gives the terms less than 1000

Formula

Guessed o.g.f.: x*(x^4 + 6*x^3 + 7*x^2 + 6*x + 3)/(1 - 2*x^3).
{k: A025427(k^2)=1}. - R. J. Mathar, Dec 15 2008
Conjecture: a(n) = 2*a(n-3) for n > 5. - Colin Barker, Mar 12 2012

Extensions

a(25)-a(36) (from comment) verified and added by Donovan Johnson, Nov 08 2013
a(37)-a(48) from Jon E. Schoenfield, Mar 22 2022

A307219 a(n) is the number of partitions of (prime(n)^2 + 2)/3 into 3 squares.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 5, 6, 2, 6, 3, 6, 5, 14, 8, 6, 5, 6, 15, 10, 6, 14, 24, 14, 6, 12, 12, 6, 16, 19, 18, 18, 36, 18, 10, 16, 20, 20, 12, 28, 18, 8, 24, 38, 27, 40, 20, 17, 30, 52, 18, 22, 26, 29, 21, 42, 31, 26, 26, 18, 44, 38, 40, 46, 26, 30, 44, 38, 36, 52, 28, 27, 38, 103, 22, 38, 78
Offset: 3

Views

Author

Marius A. Burtea, Mar 29 2019

Keywords

Comments

If p >= 5 is a prime number it can be written as p = 6m-1 or p = 6m+1. The identities ((6m-1)^2 + 2)/3 = (2m)^2 + (2m)^2 + (2m-1)^2 and ((6m+1)^2 + 2)/3 = (2m)^2 + (2m)^2 + (2m+1)^2 show that the number (p^2 + 2)/3 can be written as a sum of 3 squares of integers in at least one way.

Examples

			For n = 3, p = prime(3) = 5, (5^2+2)/3 = 9 = 2^2 + 2^2 + 1^2, so a(3) = 1.
For n = 9, p = prime(9) = 23, (23^2+2)/3 = 177 = 13^2 + 2^2 + 2^2 = 8^2 + 8^2 + 7^2, so a(9) = 2.
For n = 17, p = prime(17) = 59, (59^2+2)/3 = 1161 = 34^2 + 2^2 + 1^2 = 33^2 + 6^2 + 6^2 = 24^2 + 11^2 + 4^2 = 31^2 + 14^2 + 2^2 = 31^2 + 10^2 + 10^2 = 30^2 + 15^2 + 6^2 = 29^2 + 16^2 + 8^2 = 28^2 + 19^2 + 4^2 = 28^2 + 16^2 + 11^2 = 26^2 + 22^2 + 1^2 = 26^2 + 17^2 + 14^2 = 24^2 + 24^2 + 3^2 = 24^2 + 21^2 + 12^2 = 20^2 + 20^2 + 19^2, so a(17) = 14.
		

References

  • Ion Cucurezeanu, Pătrate și cuburi perfecte de numere întregi (Squares and perfect cubes of integer numbers), Ed. Gil., Zalău, 2007, ch. 1, p. 21, pr. 166.
  • Laurențiu Panaitopol, Dinu Șerbănescu, Number theory and combinatorial problems for juniors, Ed. Gil, Zalău, (2003), ch. 1, p. 5, pr. 4. (in Romanian).

Crossrefs

Programs

  • Magma
    [#RestrictedPartitions(Floor((p*p+2)/3),3,{d*d:d in [1..p]}): p in PrimesInInterval(5,500) ];
    
  • PARI
    a(n)={k=(prime(n+2)^2+2)/3;sum(a=1, k, sum(b=1, a, sum(c=1, b, a^2+b^2+c^2==k)));} \\ Jinyuan Wang, Mar 30 2019
Previous Showing 31-37 of 37 results.