cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A207193 Auxiliary function for computing the Carmichael lambda function (A002322).

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 2, 6, 10, 12, 4, 16, 18, 22, 20, 18, 28, 30, 8, 36, 40, 42, 46, 42, 52, 58, 60, 16, 66, 70, 72, 78, 54, 82, 88, 96, 100, 102, 106, 108, 112, 110, 100, 126, 32, 130, 136, 138, 148, 150, 156, 162, 166, 156, 172, 178, 180, 190, 192, 196, 198
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2012

Keywords

Crossrefs

Programs

  • Haskell
    a207193 1 = 1
    a207193 n | p == 2 && e > 2 = 2 ^ (e - 2)
              | otherwise       = (p - 1) * p ^ (e - 1)
              where p = a025473 n; e = a025474 n
  • Mathematica
    f[p_, e_] := If[p == 2 && e > 2, 2^(e-2), (p-1)*p^(e-1)]; s[n_] := If[n == 1, 1, If[PrimePowerQ[n], f @@ (FactorInteger[n][[1]]), Nothing]]; Array[s, 200] (* Amiram Eldar, Apr 05 2025 *)

Formula

a(n) = f(A000961(n)), where f(1) = 1, and f(p^e) = 2^(e-2) if p = 2 and e > 2, and f(p^e) = (p-1)*p^(e-1) otherwise.

A257573 Exponents in A257278 = powers of primes p^m, p <= m.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 4, 7, 5, 8, 9, 6, 10, 11, 7, 5, 12, 8, 13, 6, 14, 9, 15, 10, 16, 7, 17, 11, 18, 8, 19, 12, 7, 20, 13, 9, 21, 22, 14, 8, 23, 10, 15, 24, 25, 9, 16, 11, 26, 17, 27, 12, 28, 10, 18, 29, 30, 19, 13, 11, 31, 20, 32, 14, 33, 21, 12, 34, 15, 22
Offset: 1

Views

Author

Reinhard Zumkeller, May 01 2015

Keywords

Crossrefs

Programs

  • Haskell
    a257573 = a001222 . a257278
    
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2, r}, While[p^p <= lim, r = Range[p, Log[p, lim]]; AppendTo[s, Transpose[{r, p^r}]]; p = NextPrime[p]]; SortBy[Flatten[s, 1], Last][[;; , 1]]]; seq[10^13] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    apply(bigomega,A257278) \\ (A257278 assumed to be defined as vector). - M. F. Hasler, May 02 2015

Formula

a(n) = A001222(A257278(n)).
A257278(n) = A257572(n) ^ a(n).
A257572(n) <= a(n) by definition of A257278.

Extensions

Edited by M. F. Hasler, May 02 2015

A373946 Number of primitive polynomials of third degree over GF(m) with vanishing quadratic term with m = m(n) = A000961(n), for n >= 2.

Original entry on oeis.org

1, 1, 0, 4, 3, 18, 8, 16, 18, 48, 48, 27, 80, 48, 108, 108, 72, 300, 144, 224, 180, 308, 192, 336, 560, 240, 648, 420, 576, 540, 648, 768, 1080, 1200, 912, 1360, 1008, 1352, 1188, 1584, 960, 2340, 1620, 4410, 2112, 2432, 1980, 2952, 1560, 2592, 2025, 4592, 2448, 4872, 4576
Offset: 2

Views

Author

Martin Becker, Jun 23 2024

Keywords

Comments

Apparently, a(n) = A373514(n) * A000010( 3 * A000961(n) - 3 ) * A025474(n) / 2, for n >= 2.

Examples

			For n=5, m=5, there are 20 primitive polynomials over GF(5) of the form x^3+a*x^2+b*x+c. Among these, 4 polynomials have a=0: x^3+3*x+2, x^3+3*x+3, x^3+4*x+2, and x^3+4*x+3. Thus, a(5) = 4.
		

Crossrefs

Programs

  • PARI
    is_max_o = (x1, x0, m, e)-> {
      for(i = 1, #e, if(x1^e[i] == x0, return(0))); x1^m == x0;
    }
    count_them = (q)-> {
      z = ffprimroot(ffgen(q, 'c));
      m = q^3 - 1; f = factor(m); d = #f~;
      e = vector(d, i, m/f[d + 1 - i, 1]);
      co = vector(q - 1, i, z^(i - 1));
      r = 0;
      for(a = 1, q - 1,
        for(b = 1, q - 1,
          p = co[1]*x^3 + co[a]*x + co[b];
          x1 = Mod(x, p); x0 = x1^0;
          if(is_max_o(x1, x0, m, e) && polisirreducible(p), r += 1)
        )
      );
      r;
    }
    print1(count_them(2));
    for(q = 3, 64, if(isprimepower(q), print1(", ", count_them(q))))

A379158 Numbers m such that the consecutive prime powers A246655(m) and A246655(m+1) are both prime.

Original entry on oeis.org

1, 4, 8, 11, 12, 16, 19, 20, 21, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2024

Keywords

Comments

Also positions of 2 in A366835.

Examples

			The 4th and 5th prime powers are 5 and 7, which are both prime, so 4 is in the sequence.
The 12th and 13th prime powers are 19 and 23, which are both prime, so 12 is in the sequence.
		

Crossrefs

Positions of adjacent primes in A246655 (prime powers).
Positions of 2 in A366835.
For just one prime we have A379155, positions of prime powers in A379157.
For no primes we have A379156, positions of prime powers in A068315.
The primes powers themselves are A379541.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],PrimeQ[v[[#]]]&&PrimeQ[v[[#+1]]]&]

Formula

A246655(a(n)) = A379541(n).

A379541 Prime numbers such that the next greatest prime power is also prime.

Original entry on oeis.org

2, 5, 11, 17, 19, 29, 37, 41, 43, 53, 59, 67, 71, 73, 83, 89, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 317, 331, 347, 349, 353
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2024

Keywords

Examples

			After 13 the next prime power is 16, which is not prime, so 13 is not in the sequence.
After 19 the next prime power is 23, which is prime, so 19 is in the sequence.
		

Crossrefs

For no primes we have A068315, positions A379156.
Lesser of adjacent primes in A246655 (prime powers).
The indices of these primes are A377286.
For just one prime we have A379157, positions A379155.
Positions in the prime powers are A379158 = positions of 2 in A366835.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    nextpripow[n_]:=NestWhile[#1+1&,n+1,!PrimePowerQ[#1]&];
    Select[Range[100],PrimeQ[#]&&PrimeQ[nextpripow[#]]&]

Formula

a(n) = A246655(A379158(n)).

A085729 Sum of prime factors of prime powers.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 6, 6, 11, 13, 8, 17, 19, 23, 10, 9, 29, 31, 10, 37, 41, 43, 47, 14, 53, 59, 61, 12, 67, 71, 73, 79, 12, 83, 89, 97, 101, 103, 107, 109, 113, 22, 15, 127, 14, 131, 137, 139, 149, 151, 157, 163, 167, 26, 173, 179, 181, 191, 193, 197, 199, 211, 223
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, Times @@ f[[1]], Nothing]]; s[1] = 0; Array[s, 225] (* Amiram Eldar, May 14 2025 *)

Formula

a(n) = A001414(A000961(n)).
a(n) = e*p when n = p^e: a(n) = A025474(n)*A025473(n).

A086454 Number of divisors of prime powers: tau(p^e).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 4, 3, 2, 2, 5, 2, 2, 2, 3, 4, 2, 2, 6, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 8, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 9, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, f[[1, 2]] + 1, Nothing]]; f[1] = 1; Array[f, 400] (* Amiram Eldar, Apr 09 2024 *)

Formula

a(n) = A000005(A000961(n)).
a(n) = e+1 for A000961(n) = p^e.
a(n) = A025474(n) + 1.

A088234 First differences of exponents of consecutive prime powers.

Original entry on oeis.org

1, 0, 1, -1, 0, 2, -1, -1, 0, 3, -3, 0, 0, 1, 1, -2, 0, 4, -4, 0, 0, 0, 1, -1, 0, 0, 5, -5, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 6, -6, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 7, -7, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 1, -1, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2003

Keywords

Comments

a(n) = A025474(n+1) - A025474(n).

Crossrefs

Programs

  • Mathematica
    Join[{1},Differences[FactorInteger[#][[1,2]]&/@Select[Range[ 400], PrimePowerQ]]] (* Harvey P. Dale, Jul 10 2020 *)

A247073 Triangle read by rows: T(n,k) is the number of k-th prime powers up to 2^n, for k = 1 to n.

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 11, 3, 2, 1, 1, 18, 4, 2, 1, 1, 1, 31, 5, 3, 2, 1, 1, 1, 54, 6, 3, 2, 2, 1, 1, 1, 97, 8, 4, 2, 2, 1, 1, 1, 1, 172, 11, 4, 3, 2, 2, 1, 1, 1, 1, 309, 14, 5, 3, 2, 2, 1, 1, 1, 1, 1, 564, 18, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1028, 24, 8, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Michel Marcus, Nov 18 2014

Keywords

Examples

			Up to 16, there are 6 primes (2, 3, 5, 7, 11, 13), 2 squared primes (4,9), 1 cube (8), and 1 fourth power (16), so 4th row is 6, 2, 1, 1.
Triangle starts:
1;
2, 1;
4, 1, 1;
6, 2, 1, 1;
11, 3, 2, 1, 1;
18, 4, 2, 1, 1, 1;
...
		

Crossrefs

Cf. A000961 (prime powers), A007053 (first column), A060967 (second column).
Cf. A025474.

Programs

  • Haskell
    import Data.List (sort, groupBy); import Data.Function (on)
    a247073 n k = a247073_tabl !! (n-1) !! (k-1)
    a247073_tabl = map a247073_row [1..]
    a247073_row n = map length $ groupBy ((==) `on` fst) $ sort $
       takeWhile ((<= 2^n). snd) $ tail $ zip a025474_list a000961_list
    -- Reinhard Zumkeller, Nov 18 2014
  • PARI
    tabl(nn) = {for (n=1, nn, v = vector(2^n, i, i); vr = vector(n); for (k=1, #v, if (pp = isprimepower(v[k]), vr[pp] ++);); for (k=1, n, print1(vr[k], ", ");); print(););}
    

A264744 Exponent of the prime power A264734(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 4, 1, 1, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2015

Keywords

Comments

Subsequence of A025474.

Examples

			a(9) = 4 is the exponent of 81 = A264734(9) = 3^4.
		

Crossrefs

Cf. A025474, A264734 (prime power k such that both k - 2 and k + 2 is a prime power).

Programs

  • Mathematica
    t = Prepend[Select[Range@ 100000, AllTrue[{# - 2, #, # + 2}, PrimePowerQ] &], 3]; Flatten@ Map[Last, FactorInteger@ # &@ t, {2}] (* Michael De Vlieger, Dec 03 2015, Version 10 *)
  • PARI
    is(k) = isprimepower(k) || k==1;
    for(k=1, 1e6, if(is(k) && is(k+2) && is(k-2), print1(bigomega(k), ", "))) \\ Altug Alkan, Nov 23 2015
Previous Showing 21-30 of 34 results. Next