1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 1, 5, 9, 5, 4, 1, 0, 1, 6, 14, 14, 9, 5, 1, 0, 1, 7, 20, 28, 14, 14, 6, 1, 0, 1, 8, 27, 48, 42, 28, 20, 7, 1, 0, 1, 9, 35, 75, 90, 42, 48, 27, 8, 1, 0, 1, 10, 44, 110, 165, 132, 90, 75, 35, 9, 1, 0, 1, 11, 54, 154, 275, 297, 132, 165, 110, 44, 10, 1, 0
Offset: 0
Row 6 equals the pendular sums of row 5:
[1, 4, 5, 3, 1, 0], where the sums proceed as follows:
[1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
[1, __, __, __, __, 1]: T(6,5) = T(6,0) - T(5,5) = 1 - 0 = 1;
[1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
[1, 5, __, __, 4, 1]: T(6,4) = T(6,1) - T(5,4) - T(5,5) = 5-1-0 = 4;
[1, 5, 9, __, 4, 1]: T(6,2) = T(6,4) + T(5,2) = 4 + 5 = 9;
[1, 5, 9, 5, 4, 1]: T(6,3) = T(6,2) - T(5,3) - T(5,4) = 9-3-1 = 5;
[1, 5, 9, 5, 4, 1, 0] finally, append a zero to obtain row 6.
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 2, 1, 0;
1, 4, 5, 3, 1, 0;
1, 5, 9, 5, 4, 1, 0;
1, 6, 14, 14, 9, 5, 1, 0;
1, 7, 20, 28, 14, 14, 6, 1, 0;
1, 8, 27, 48, 42, 28, 20, 7, 1, 0;
1, 9, 35, 75, 90, 42, 48, 27, 8, 1, 0;
1, 10, 44, 110, 165, 132, 90, 75, 35, 9, 1, 0;
1, 11, 54, 154, 275, 297, 132, 165, 110, 44, 10, 1, 0;
Central terms are Catalan numbers T(2*n,n) = A000108(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = [A000108^2](n),
T(2*n+2,n) = [A000108^3](n).
Comments