cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A026566 a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=n, T given by A026552.

Original entry on oeis.org

1, 3, 9, 20, 53, 117, 308, 684, 1806, 4028, 10664, 23844, 63239, 141612, 376026, 842866, 2239900, 5024166, 13359408, 29980384, 79753402, 179044760, 476451644, 1069936084, 2847931619, 6396900694, 17030741437, 38260956765
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[i,j], {i,0,n}, {j,0,i}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( sum( T(i,j) for j in (0..i) ) for i in (0..n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = Sum_{i=0..n} Sum_{j=0..i} A026552(i, j).

A027272 Self-convolution of row n of array T given by A026552.

Original entry on oeis.org

1, 3, 19, 58, 462, 1608, 13446, 48924, 417440, 1553940, 13409576, 50618184, 440013462, 1676640462, 14649846820, 56201554888, 492944907180, 1900789437276, 16721000706580, 64734185205960, 570792185166764, 2216888144737508, 19584623363041704, 76265067399850848
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, 2*n-k], {k, 0, 2*n}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 18 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,2*n-k) for k in (0..2*n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 18 2021

Formula

a(n) = Sum_{k=0..2*n} A026552(n, k)*A026552(n, 2*n-k).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027273 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026552.

Original entry on oeis.org

2, 16, 52, 428, 1516, 12792, 46936, 402164, 1504432, 13015480, 49288856, 429204354, 1639174304, 14340670000, 55108565584, 483825847108, 1868067054968, 16445659005424, 63734526307552, 562323306397388, 2185849699156352, 19320211642880176, 75288454939134992
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 18 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+1) for k in (0..2*n-1) )
    [a(n) for n in (1..40)] # G. C. Greubel, Dec 18 2021

Formula

a(n) = Sum_{k=0..2*n-1} A026552(n, k)*A026552(n, k+1).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027274 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026552.

Original entry on oeis.org

10, 40, 342, 1279, 11016, 41462, 359530, 1365014, 11899516, 45501743, 398306769, 1531614109, 13450930624, 51952990090, 457449811458, 1773182087440, 15646091896400, 60825762159338, 537651887201990, 2095280066101886, 18547910336883720, 72432026278468535
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}]];
    Table[a[n], {n,2,40}] (* G. C. Greubel, Dec 18 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+2) for k in (0..2*n-2) )
    [a(n) for n in (2..40)] # G. C. Greubel, Dec 18 2021

Formula

a(n) = Sum_{k=0..2*n-2} A026552(n,k) * A026552(n,k+2).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027275 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026552.

Original entry on oeis.org

24, 232, 954, 8560, 33648, 297940, 1159844, 10242416, 39809076, 351561242, 1367463642, 12086555584, 47082494816, 416589513644, 1625447736120, 14397549291280, 56265306436584, 498879779964188, 1952476424575980, 17327820010494464, 67907006619888744
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}]];
    Table[a[n], {n,3,40}] (* G. C. Greubel, Dec 18 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+3) for k in (0..2*n-3) )
    [a(n) for n in (3..40)] # G. C. Greubel, Dec 18 2021

Formula

a(n) = Sum_{k=0..2*n-3} A026552(n, k) * A026552(n, k+3).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027276 a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).

Original entry on oeis.org

1, 6, 27, 72, 270, 648, 2268, 5184, 17496, 38880, 128304, 279936, 909792, 1959552, 6298560, 13436928, 42830208, 90699264, 287214336, 604661760, 1904684544, 3990767616, 12516498432, 26121388032, 81629337600, 169789022208
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:= [6,27,72,270]; [1] cat [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // G. C. Greubel, Dec 18 2021
    
  • Mathematica
    Table[-(1/2)*Boole[n==0] + (1/4)*6^(n/2)*(n+1)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)), {n, 0, 40}] (* G. C. Greubel, Dec 18 2021 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;27;72])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( (k+1)*T(n,k) for k in (0..2*n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 18 2021
    

Formula

a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
G.f.: (1 +6*x +15*x^2 -18*x^3)/(1-6*x^2)^2.
a(n) = -(1/2)*[n=0] + (1/4)*6^(n/2)*(n + 1)*(3*(1 + (-1)^n) + sqrt(6)*(1 - (-1)^n)). - G. C. Greubel, Dec 18 2021

A026564 a(n) = Sum_{j=0..n} T(n, j), where T is given by A026552.

Original entry on oeis.org

1, 2, 6, 11, 33, 64, 191, 376, 1122, 2222, 6636, 13180, 39395, 78373, 234414, 466840, 1397034, 2784266, 8335242, 16620976, 49773018, 99291358, 297406884, 593484440, 1777995535, 3548969075, 10633840743, 21230215328, 63620551947
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k], {k,0,n}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k) for k in (0..n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = Sum_{j=0..n} A026552(n, j).

A026536 Irregular triangular array T read by rows: T(i,0 ) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; for even n >= 2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) for j = 2..2i-2, for odd n >= 3, T(i,j) = T(i-1,j-2) + T(i-1,j) for j = 2..2i-2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 5, 6, 8, 6, 5, 2, 1, 1, 2, 6, 8, 13, 12, 13, 8, 6, 2, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 3, 10, 19, 36, 49, 65, 66, 65, 49, 36, 19, 10, 3, 1, 1, 4, 14, 32, 65, 104, 150, 180, 196, 180
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i) - s(i-1)| <= 1 if i is even, |s(i) - s(i-1)| = 1 if i is odd.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  3  2  3  1  1
  1  2  5  6  8  6  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2];
    t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] =
    If[EvenQ[n], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], t[n - 1, k -
    2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026536 array *)
    v = Flatten[u] (* A026536 sequence *)
  • SageMath
    @cached_function
    def T(n, k):
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) # Peter Luschny, Oct 13 2019

Extensions

Updated by Clark Kimberling, Aug 28 2014
Offset changed to 0 by Peter Luschny, Oct 10 2019

A026519 Irregular triangular array T read by rows: T(n, k) = T(n-1, k-2) + T(n-1, k) if (n mod 2) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), with T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor((n+1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 4, 4, 2, 1, 1, 2, 5, 6, 8, 6, 5, 2, 1, 1, 3, 8, 13, 19, 20, 19, 13, 8, 3, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 4, 14, 32, 65, 104, 150, 180, 196, 180, 150, 104, 65, 32, 14, 4, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i) - s(i-1)| = 1 if i is even, |s(i) - s(i-1)| <= 1 if i is odd.

Examples

			First 5 rows:
1
1 ... 1 ... 1
1 ... 1 ... 2 ... 1 ... 1
1 ... 2 ... 4 ... 4 ... 4 ... 2 ... 1
1 ... 2 ... 5 ... 6 ... 8 ... 6 ... 5 ... 2 ... 1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0]:= 1; t[n_, k_]:= 1/; k==2n; t[n_, 1]:= Floor[(n+1)/2]; t[n_, k_] := Floor[(n+1)/2] /; k==2n-1; t[n_, k_]:= t[n, k]= If[EvenQ[n], t[n-1, k-2] + t[n-1, k], t[n-1, k-2] + t[n-1, k-1] + t[n-1, k]];
    u = Table[t[n, k], {n, 0, z}, {k, 0, 2n}];
    TableForm[u]  (* A026519 array *)
    Flatten[u] (* A026519 sequence *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 19 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if (n mod 2) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), with T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor((n+1)/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014
Offset changed to 0 by G. C. Greubel, Dec 19 2021

A026584 Irregular triangular array T read by rows: T(i,0) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; and for i >= 2 and j = 2..2i-2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) if i+j is odd, and T(i,j) = T(i-1,j-2) + T(i-1,j) if i+j is even.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 5, 7, 8, 7, 5, 2, 1, 1, 2, 8, 9, 20, 14, 20, 9, 8, 2, 1, 1, 3, 9, 19, 28, 43, 40, 43, 28, 19, 9, 3, 1, 1, 3, 13, 22, 56, 62, 111, 86, 111, 62, 56, 22, 13, 3, 1, 1, 4, 14, 38, 69, 140, 167, 259, 222, 259, 167, 140, 69, 38, 14, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Row sums are in A026597. - Philippe Deléham, Oct 16 2006
T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i)-s(i-1)| <= 1 if s(i-1) odd, |s(i)-s(i-1)| = 1 if s(i-1) is even, for i = 1..n.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  4  2  4  1  1
  1  2  5  7  8  7  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2]; t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] = If[EvenQ[n + k], t[n - 1, k - 2] + t[n - 1, k], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026584 array *)
    v = Flatten[u] (* A026584 sequence *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 11 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if ( (n+k) mod 2 ) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), where T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor(n/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014
Previous Showing 11-20 of 32 results. Next