cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A213947 Triangle read by rows: columns are finite differences of the INVERT transform of (1, 2, 3, ...) terms.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 10, 6, 4, 1, 20, 21, 8, 5, 1, 42, 57, 28, 10, 6, 1, 84, 150, 88, 35, 12, 7, 1, 170, 390, 252, 110, 42, 14, 8, 1, 340, 990, 712, 335, 132, 49, 16, 9, 1, 682, 2475, 1992, 975, 402, 154, 56, 18, 10
Offset: 1

Views

Author

Gary W. Adamson, Jun 25 2012

Keywords

Comments

Create an array in which the n-th row is the output of the INVERT transform on the first n natural numbers followed by zeros:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 11, 21, 43, 85, ... (A001045)
1, 3, 8, 17, 42, 100, 235, ... (A101822)
1, 3, 8, 21, 50, 128, 323, ...
...
For example, row 3 is the INVERT transform of (1, 2, 3, 0, 0, 0, ...). Then, take finite differences of column terms starting from the top; which become the rows of the triangle.

Examples

			First few rows of the triangle:
  1;
  1,    2;
  1,    4,    3;
  1,   10,    6,    4;
  1,   20,   21,    8,    5;
  1,   42,   57,   28,   10,    6;
  1,   84,  150,   88,   35,   12,   7;
  1,  170,  390,  252,  110,   42,  14,   8;
  1,  340,  990,  712,  335,  132,  49,  16,  9;
  1,  682, 2475, 1992,  975,  402, 154,  56, 18, 10;
  1, 1364, 6138, 5464, 2805, 1200, 469, 176, 63, 20, 11;
  ...
		

Crossrefs

Cf. A001906 (row sums), A026644 (2nd column).

Programs

  • Maple
    read("transforms") ;
    A213947i := proc(n,k)
            L := [seq(i,i=1..n),seq(0,i=0..k)] ;
            INVERT(L) ;
            op(k,%) ;
    end proc:
    A213947 := proc(n,k)
            if k = 1 then
                    1;
            else
            A213947i(k,n)-A213947i(k-1,n) ;
            end if;
    end proc: # R. J. Mathar, Jun 30 2012

A014131 a(n) = 2*a(n-1) if n odd else 2*a(n-1) + 6.

Original entry on oeis.org

0, 6, 12, 30, 60, 126, 252, 510, 1020, 2046, 4092, 8190, 16380, 32766, 65532, 131070, 262140, 524286, 1048572, 2097150, 4194300, 8388606, 16777212, 33554430, 67108860, 134217726, 268435452, 536870910
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000975.

Programs

  • Magma
    [2^(n+2)-3-(-1)^n: n in [0..30]]; // Vincenzo Librandi, Apr 03 2012
  • Mathematica
    Table[2^(n+2)-3-(-1)^n,{n,0,40}] (* or *) CoefficientList[Series[6x/((1-2x)(1-x)(1+x)),{x,0,30}],x] (* Vincenzo Librandi, Apr 03 2012 *)
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],2a,2a+6]}; NestList[nxt,{1,0},30][[;;,2]] (* or *) LinearRecurrence[ {2,1,-2},{0,6,12},30] (* Harvey P. Dale, Aug 26 2024 *)

Formula

a(n) = 3*A026644(n), n > 0. [moved from A020988 by R. J. Mathar, Oct 21 2008]
From R. J. Mathar, Oct 21 2008: (Start)
G.f.: 6x/((1-2x)(1-x)(1+x)).
a(n) = 2^(n+2) - 3 - (-1)^n. (End)

A293014 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) for n > 4, where a(n)=0 for n < 4 and a(4) = 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 11, 17, 28, 44, 72, 116, 189, 305, 494, 798, 1292, 2090, 3383, 5473, 8856, 14328, 23184, 37512, 60697, 98209, 158906, 257114, 416020, 673134, 1089155, 1762289, 2851444, 4613732, 7465176, 12078908
Offset: 0

Views

Author

Keywords

Comments

The interest of this sequence is mainly in the array of its successive differences, the diagonals of which are closely related to the Jacobsthal numbers A001045.
Successive differences begin:
0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 11, 17, 28, 44, ...
0, 0, 0, 1, 0, 1, 0, 2, 2, 5, 6, 11, 16, 28, ...
0, 0, 1, -1, 1, -1, 2, 0, 3, 1, 5, 5, 12, 16, ...
0, 1, -2, 2, -2, 3, -2, 3, -2, 4, 0, 7, 4, 13, ...
1, -3, 4, -4, 5, -5, 5, -5, 6, -4, 7, -3, 9, 1, ...
-4, 7, -8, 9, -10, 10, -10, 11, -10, 11, -10, 12, -8, 15, ...
...
The main diagonal d0 (0, 1, 2, 5, 10, 21, 42, 85, ...) (with initial zero dropped) consists of the Lichtenberg numbers A000975.
Likewise, the first upper subdiagonal d1 (0, -1, -2, -5, -10, -21, -42, -85, ...) is the negated Lichtenberg numbers (so is d3).
The second upper subdiagonal d2 (0, 1, 1, 3, 5, 11, 21, 43, 85, ...) is the Jacobsthal numbers.
Subdiagonal d4 (1, 1, 2, 3, 6, 11, 22, 43, 86, ...) is A005578.
Subdiagonal d5 (1, 0, 0, -2, -4, -10, -20, -42, -84, ...) is negated A026644 from the 4th term on.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, 1}, {0, 0, 0, 0, 1}, 40]
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,-1,1,1]^n)[1,5] \\ Charles R Greathouse IV, Sep 28 2017

Formula

G.f.: x^4/(1 - x - x^2 + x^3 - x^4 - x^5).
Previous Showing 21-23 of 23 results.