cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A027213 Sum of squares of numbers in row n of array T given by A026725.

Original entry on oeis.org

1, 2, 6, 27, 92, 440, 1556, 7514, 27082, 130883, 477258, 2303413, 8465592, 40783083, 150735628, 724837891, 2690363900, 12915186640, 48093650016, 230526280814, 860654319126, 4119854160332, 15413262342946, 73695109608352, 276180051478904, 1319136935150530, 4950605267226796
Offset: 0

Views

Author

Keywords

Programs

Extensions

More terms from Sean A. Irvine, Oct 24 2019

A026731 Greatest number in row n of array T given by A026725.

Original entry on oeis.org

1, 1, 2, 4, 7, 16, 27, 65, 108, 267, 440, 1105, 1812, 4597, 7514, 19196, 31307, 80380, 130883, 337284, 548547, 1417582, 2303413, 5965622, 9686617, 25130844, 40783083, 105954110, 171868037, 447015744, 724837891, 1886996681
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(2*n) = A026726(n); a(2*n+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014

A026671 Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).

Original entry on oeis.org

1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027
Offset: 0

Views

Author

Keywords

Comments

1, 1, 3, 11, 43, 173, ... is the unique sequence for which both the Hankel transform of the sequence itself and the Hankel transform of its left shift are the powers of 2 (A000079). For example, det[{{1, 1, 3}, {1, 3, 11}, {3, 11, 43}}] = det[{{1, 3, 11}, {3, 11, 43}, {11, 43, 173}}] = 4. - David Callan, Mar 30 2007
From Paul Barry, Jan 25 2009: (Start)
a(n) is the image of F(2n+2) under the Catalan matrix (1,xc(x)) where c(x) is the g.f. of A000108.
The sequence 1,1,3,... is the image of A001519 under (1,xc(x)). This sequence has g.f. given by 1/(1-x-2x^2/(1-3x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). (End)
Binomial transform of A111961. - Philippe Deléham, Feb 11 2009
From Paul Barry, Nov 03 2010: (Start)
The sequence 1,1,3,... has g.f. 1/(1-x/sqrt(1-4x)), INVERT transform of A000984.
It is an eigensequence of the sequence array for A000984. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

a(n) = T(2n-1, n-1), T given by A026736.
a(n) = T(2n, n), T given by A026670.
a(n) = T(2n+1, n+1), T given by A026725.
Row sums of triangle A054335.

Programs

  • GAP
    a:=[3,11,43];; for n in [4..30] do a[n]:=(2*(4*n-3)*a[n-1] - 3*(5*n-8)*a[n-2] - 2*(2*n-3)*a[n-3])/n; od; Concatenation([1], a); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-4*x]-x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/(sqrt(1 -4*x +x*O(x^n)) -x), n))} /* Michael Somos, Apr 20 2007 */
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(sqrt(1-4*x)-x) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    (1/(sqrt(1-4*x)-x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Wolfdieter Lang, Mar 21 2000: (Start)
G.f.: 1/(sqrt(1-4*x)-x).
a(n) = Sum_{i=1..n} a(i-1)*binomial(2*(n-i), n-i) + binomial(2*n, n), n >= 1, a(0)=1. (End)
G.f.: 1/(1 -x -2*x*c(x)) where c(x) = g.f. for Catalan numbers A000108. - Michael Somos, Apr 20 2007
From Paul Barry, Jan 25 2009: (Start)
G.f.: 1/(1 - 3xc(x) + x^2*c(x)^2);
G.f.: 1/(1-3x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..n} (k/(2n-k))*C(2n-k,n-k)*F(2k+2). (End)
a(n) = Sum_{k=0..n} A039599(n,k) * A000045(k+2). - Philippe Deléham, Feb 11 2009
From Paul Barry, Feb 08 2009: (Start)
G.f.: 1/(1-x/(1-2x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction);
G.f. of 1,1,3,... is 1/(1-x-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = the infinite square production matrix:
3, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Vaclav Kotesovec, Oct 08 2012: (Start)
D-finite with recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/sqrt(5). (End)
a(n) = Sum_{k=0..n+1} 4^(n+1-k) * binomial(n-k/2,n+1-k). - Seiichi Manyama, Mar 30 2025
From Peter Luschny, Mar 30 2025: (Start)
a(n) = 4^n*(binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4) + hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4)/4) for n > 0.
a(n) = A001076(n) + A176280(n). (End)

A026670 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 1, T(n,1) = T(n,n-1) = n+1; for n >= 2, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k = n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 11, 5, 1, 1, 6, 16, 16, 6, 1, 1, 7, 22, 43, 22, 7, 1, 1, 8, 29, 65, 65, 29, 8, 1, 1, 9, 37, 94, 173, 94, 37, 9, 1, 1, 10, 46, 131, 267, 267, 131, 46, 10, 1, 1, 11, 56, 177, 398, 707, 398, 177, 56, 11, 1, 1, 12, 67
Offset: 0

Views

Author

Keywords

Examples

			E.g., 11 = T(4, 2) = T(3, 1) + T(2, 2) + T(3, 2) = 4 + 3 + 4.
Triangle begins:
1
1  1
1  3  1
1  4  4   1
1  5 11   5   1
1  6 16  16   6    1
1  7 22  43  22    7    1
1  8 29  65  65   29    8   1
1  9 37  94 173   94   37   9   1
1 10 46 131 267  267  131  46  10  1
1 11 56 177 398  707  398 177  56 11  1
1 12 67 233 575 1105 1105 575 233 67 12 1
... - _Philippe Deléham_, Feb 02 2014
		

Crossrefs

Cf. A026674.

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=j.

Extensions

Formula corrected by David Perkinson (davidp(AT)reed.edu), Sep 19 2001 and also by Rob Arthan, Jan 16 2003
Typo in name corrected by Sean A. Irvine, Oct 09 2019
Offset corrected by R. J. Mathar and Sean A. Irvine, Oct 25 2019

A026673 a(n) = T(2n,n-2), T given by A026670.

Original entry on oeis.org

1, 7, 37, 177, 808, 3596, 15764, 68446, 295294, 1268356, 5430734, 23199304, 98933705, 421352919, 1792709561, 7621345733, 32380443643, 137504761035, 583684770103, 2476836131227, 10507517431481, 44566369523517, 188988331406117
Offset: 2

Views

Author

Keywords

Comments

Also a(n) = T(2n,n-2) = T(2n+1,n+2), T given by A026725.
Also a(n) = T(2n,n-2), T given by A026736.
Column k=6 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(  (1-Sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^6/(8*x^2*(8*x^2-(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (x^2*C(x)^6)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
-(n+2)*(3*n-7)*a(n) +2*(12*n^2-19*n-16)*a(n-1) +5*(-9*n^2+27*n-22)*a(n-2) -2*(3*n-4)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 26 2019
Previous Showing 21-25 of 25 results.