cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A026746 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026736.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 14, 23, 42, 65, 107, 194, 301, 495, 890, 1385, 2275, 4058, 6333, 10391, 18404, 28795, 47199, 83079, 130278, 213357, 373512, 586869, 960381, 1673271, 2633652, 4306923, 7472326, 11779249, 19251575, 33275451, 52527026
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..20], n-> Sum([0..Int(n/2)], k-> T(n-k,k) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(30, n, n--; sum(k=0, n\2, T(n-k,k))) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n-k,k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, Jul 19 2019
    

Formula

a(n) ~ n * phi^(n-2) / 15, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019

A026850 a(n) = T(2n,n+1), T given by A026736.

Original entry on oeis.org

1, 4, 15, 57, 221, 872, 3489, 14113, 57575, 236457, 976271, 4047871, 16840879, 70259892, 293790127, 1230783085, 5164196117, 21696512073, 91254256589, 384165925259, 1618551762085, 6823801074549, 28785680471185, 121490461772347
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^3/(8*x^2*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019
    
  • Mathematica
    CoefficientList[ Series[(1-Sqrt[1-4x])^3/(8x^3(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^3/(8*x^2*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^3/(8*x^2*(sqrt(1-4*x) -x))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 17 2019

Formula

G.f.: (x * C(x)^3)/(1 - x/sqrt(1 - 4 * x)) where C(x) is the g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^3 * (2 + sqrt(5))^(n+1) / (8*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019

A026851 a(n) = T(2n,n+2), T given by A026736.

Original entry on oeis.org

1, 6, 28, 121, 508, 2109, 8723, 36065, 149277, 618961, 2571503, 10704390, 44641793, 186492242, 780275596, 3269135406, 13713525610, 57588530626, 242068874444, 1018378855512, 4287501276956, 18062827159136, 76141329903018
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^5/(32*x^3*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])^5/(32 x^5 (1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^5/(32*x^3*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^5/(32*x^3*(sqrt(1-4*x)-x))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 17 2019

Formula

G.f.: (x * C(x)^5)/(1 - x/sqrt(1 - 4 * x)) where C(x) is the g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^5 * (2 + sqrt(5))^(n+2) / (32*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
D-finite with recurrence -(n+3)*(55*n-136)*a(n) +2*(331*n^2-427*n-1440)*a(n-1) +3*(-867*n^2+2755*n-252)*a(n-2) +2*(1555*n^2-8227*n+11304)*a(n-3) +12*(37*n-89)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Nov 22 2024

A026853 a(n) = T(2n,n+4), T given by A026736.

Original entry on oeis.org

1, 10, 66, 365, 1837, 8741, 40133, 179932, 793605, 3460106, 14961664, 64306917, 275180827, 1173714565, 4994096327, 21211537533, 89972566673, 381261067469, 1614446775255, 6832832045575, 28908094009481, 122272843951891, 517095189163181
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^9/(512*x^5*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019
    
  • Mathematica
    Drop[CoefficientList[Series[Sqrt[1-4x]*(1-Sqrt[1-4x])^9/(512*x^5*(Sqrt[1-4x]-x)), {x,0,40}], x], 4] (* G. C. Greubel, Jul 17 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^9/(512*x^5*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^9/(512*x^5*(sqrt(1-4*x)-x))).series(x, 40).coefficients(x, sparse=False); a[4:] # G. C. Greubel, Jul 17 2019

Formula

G.f.: x^4*C(x)^9/(1 -x/sqrt(1-4*x)), where C(x) if the g.f. for Catalan numbers A000108. - G. C. Greubel, Jul 17 2019
a(n) ~ (3 - sqrt(5))^9 * (2 + sqrt(5))^(n+4) / (512*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
D-finite with recurrence -(n+5)*(3013*n-9152)*a(n) +2*(15151*n^2+5919*n-112720)*a(n-1) +2*(-35029*n^2+9054*n-235442)*a(n-2) +6*(-19475*n^2+144598*n+188045)*a(n-3) +3*(131869*n^2-942353*n+1922276)*a(n-4) +2*(2*n-7)*(24721*n-92359)*a(n-5)=0. - R. J. Mathar, Nov 22 2024

A026854 a(n) = T(2n+1,n+1), T given by A026736.

Original entry on oeis.org

1, 3, 10, 36, 136, 530, 2109, 8515, 34739, 142817, 590537, 2452639, 10221505, 42714623, 178888442, 750500716, 3153137436, 13263180550, 55844218906, 235323138044, 992316962382, 4186870456952, 17674378119680, 74641954142026
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^2/(4*x^2*(1-x/Sqrt(1-4*x))) )); // G. C. Greubel, Jul 21 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])^2/(4x^2(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^2/(4*x^2*(1-x/sqrt(1-4*x))) ) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    ((1-sqrt(1-4*x))^2/(4*x^2*(1-x/sqrt(1-4*x)))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 21 2019

Formula

G.f.: C(x)^2/(1 - x/sqrt(1-4*x)) where C(x) = g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^2 * (2 + sqrt(5))^(n+1) / (4*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019

A026855 a(n) = T(2n+1,n+2), T given by A026736.

Original entry on oeis.org

1, 5, 21, 85, 342, 1380, 5598, 22836, 93640, 385734, 1595232, 6619374, 27545269, 114901685, 480282369, 2011058681, 8433331523, 35410037683, 148842787215, 626234799703, 2636930617597, 11111302351505, 46848507630321, 197631791675365
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^4/(16*x^3*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019
    
  • Maple
    gf := ((-2*x^3+12*x^2-7*x+1)*sqrt(1-4*x)+16*x^3-24*x^2+9*x-1)/(2*(x^2+4*x-1)*x^3):
    S:= series(gf,x,40):
    seq(coeff(S,x,j),j=1..30); # Robert Israel, Jan 17 2016
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])^4/(16*x^4*(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( sqrt(1-4*x)*(1-sqrt(1-4*x))^4/(16*x^3*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^4/(16*x^3*(sqrt(1-4*x) -x))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 17 2019

Formula

G.f.: (x*C(x)^4)/(1 - x/sqrt(1 - 4*x)) where C(x) is the g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^4 * (2 + sqrt(5))^(n+2) / (16*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
D-finite with recurrence -2*(n+3)*(26*n-53)*a(n) +(627*n^2-491*n-2440)*a(n-1) +2*(-1234*n^2+3198*n+337)*a(n-2) +(2957*n^2-13637*n+15888)*a(n-3) +2*(211*n-368)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Nov 22 2024

A026856 a(n) = T(2n+1,n+3), T given by A026736.

Original entry on oeis.org

1, 7, 36, 166, 729, 3125, 13229, 55637, 233227, 976271, 4085016, 17096524, 71590557, 299993227, 1258076725, 5280194087, 22178492943, 93226087229, 392144055809, 1650570659359, 6951524807631, 29292822272697, 123496979334851
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^6/(64*x^6*(1-x/Sqrt(1-4*x))) )); // G. C. Greubel, Jul 21 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])^6/(64*x^6*(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^6/(64*x^6*(1-x/sqrt(1-4*x))) ) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    ((1-sqrt(1-4*x))^6/(64*x^6*(1-x/sqrt(1-4*x)))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 21 2019

Formula

G.f.: (x^2 * C(x)^6)/(1 - x/sqrt(1-4*x)) where C(x) = g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^6 * (2 + sqrt(5))^(n+3) / (64*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019

A026857 a(n) = T(2n+1,n+4), T given by A026736.

Original entry on oeis.org

1, 9, 55, 287, 1381, 6343, 28313, 124083, 537242, 2307118, 9852240, 41910428, 177807902, 752981956, 3184773246, 13459063660, 56849094136, 240047748038, 1013452871316, 4278470305930, 18062827159136, 76263743441314, 322033566728056
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^8/(2^8*x^5*(1-x/Sqrt(1-4*x))) )); // G. C. Greubel, Jul 19 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4x])^8/(2^8*x^5*(1-x/Sqrt[1-4x])), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^8/(2^8*x^5*(1-x/sqrt(1-4*x)))) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^8/(2^8*x^5*(1-x/sqrt(1-4*x)))).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 19 2019

Formula

G.f.: x^3*C(x)^8/(1 - x/sqrt(1-4*x)). - G. C. Greubel, Jul 19 2019
a(n) ~ phi^(3*n-4) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019

A027215 Self-convolution of row n of array T given by A026736.

Original entry on oeis.org

1, 2, 6, 20, 78, 282, 1187, 4428, 19175, 72820, 319493, 1227712, 5424359, 21018514, 93252862, 363563668, 1617342486, 6334904252, 28232695584, 110982722888, 495257577162
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..20], n-> Sum([0..n], k-> T(n, k)*T(n,n-k) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]];
    Table[Sum[T[n, k]*T[n, n-k], {k,0,n}], {n,0,40}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(21, n, n--; sum(k=0, n, T(n, k)*T(n,n-k)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        if (k==n-1): return n
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)*T(n,n-k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
    

A027216 a(n) = Sum_{k=0..n-1} T(n,k)*T(n,k+1), T given by A026736.

Original entry on oeis.org

1, 4, 15, 63, 237, 1034, 3945, 17577, 67640, 304902, 1179415, 5352038, 20771331, 94628132, 368083879, 1680820301, 6548692260, 29946087674, 116816782997, 534628747310
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([1..20], n-> Sum([0..n-1], k-> T(n, k)*T(n,k+1) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+1], {k, 0, n-1}], {n, 1, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, sum(k=0, n-1, T(n, k)*T(n,k+1)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)*T(n,k+1) for k in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jul 19 2019
    

Formula

a(n) ~ (1/2 - (-1)^n/10) * phi^(3*n - 5/2 + (-1)^n/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019
Previous Showing 11-20 of 30 results. Next