cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A060027 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 8.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 12, 16, 15, 18, 15, 18, 12, 12, 2, -3, -20, -31, -59, -81, -122, -160, -222, -280, -369, -457, -581, -708, -878, -1055, -1286, -1528, -1833, -2158, -2559, -2985, -3504, -4059, -4721, -5433, -6271, -7172, -8224, -9355, -10660, -12067
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+7 into 7 parts and the number of partitions of n+7 into 8 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), this sequence (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • Mathematica
    With[{nn=8},CoefficientList[Series[(1-x-x^nn)/Times@@(1-x^Range[nn]),{x,0,60}],x]] (* Harvey P. Dale, May 15 2016 *)

Formula

a(n) = A026813(n+7) - A026814(n+7). - Wesley Ivan Hurt, Apr 16 2019

A211862 Number of partitions of n into parts <= 7 with the property that all parts have distinct multiplicities.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 12, 14, 19, 25, 26, 39, 46, 51, 65, 84, 87, 116, 123, 147, 171, 216, 220, 281, 306, 364, 402, 496, 511, 636, 678, 793, 861, 1032, 1062, 1273, 1360, 1569, 1683, 1978, 2054, 2428, 2566, 2953, 3118, 3627, 3812, 4378, 4631
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Examples

			For n=3 the a(3)=2 partitions are {3} and {1,1,1}. Note that {2,1} does not count, as 1 and 2 appear with the same nonzero multiplicity.
		

Crossrefs

Programs

  • Haskell
    a211862 n = p 0 [] [1..7] n where
       p m ms _      0 = if m `elem` ms then 0 else 1
       p    []     _ = 0
       p m ms ks'@(k:ks) x
         | x < k       = 0
         | m == 0      = p 1 ms ks' (x - k) + p 0 ms ks x
         | m `elem` ms = p (m + 1) ms ks' (x - k)
         | otherwise   = p (m + 1) ms ks' (x - k) + p 0 (m : ms) ks x
    -- Reinhard Zumkeller, Dec 27 2012

A308926 Sum of all the parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 7, 8, 18, 30, 55, 84, 143, 210, 315, 448, 646, 882, 1235, 1640, 2205, 2882, 3772, 4824, 6200, 7800, 9828, 12208, 15138, 18540, 22723, 27520, 33297, 39950, 47845, 56844, 67488, 79534, 93600, 109520, 127920, 148638, 172473, 199144, 229590
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Flatten[IntegerPartitions[n,{7}]]],{n,0,50}] (* Harvey P. Dale, Jul 27 2025 *)

Formula

a(n) = n * Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} 1.
a(n) = n * A026813(n).
a(n) = A308927(n) + A308928(n) + A308929(n) + A308930(n) + A308931(n) + A308932(n) + A308933(n).

A308927 Sum of the smallest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 16, 22, 30, 41, 54, 72, 93, 121, 153, 194, 242, 302, 372, 457, 557, 675, 812, 975, 1162, 1381, 1632, 1924, 2254, 2636, 3068, 3562, 4119, 4752, 5463, 6265, 7162, 8170, 9293, 10549, 11942, 13496, 15211, 17115, 19214
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[o, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} o.
a(n) = A308926(n) - A308928(n) - A308929(n) - A308930(n) - A308931(n) - A308932(n) - A308933(n).

A308928 Sum of the sixth largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 24, 33, 46, 61, 84, 109, 144, 184, 237, 298, 379, 470, 585, 719, 882, 1069, 1300, 1560, 1873, 2230, 2653, 3129, 3694, 4326, 5063, 5892, 6848, 7917, 9147, 10513, 12071, 13804, 15765, 17935, 20389, 23088, 26118
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[m, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} m.
a(n) = A308926(n) - A308927(n) - A308929(n) - A308930(n) - A308931(n) - A308932(n) - A308933(n).

A308929 Sum of the fifth largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 19, 27, 38, 54, 73, 101, 133, 177, 230, 298, 380, 485, 608, 762, 944, 1165, 1423, 1738, 2101, 2534, 3035, 3625, 4300, 5095, 5996, 7043, 8231, 9598, 11142, 12910, 14893, 17148, 19674, 22529, 25709, 29295, 33267
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[l, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} l.
a(n) = A308926(n) - A308927(n) - A308928(n) - A308930(n) - A308931(n) - A308932(n) - A308933(n).

A308930 Sum of the fourth largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 9, 15, 22, 33, 46, 67, 91, 128, 169, 228, 297, 390, 498, 641, 806, 1018, 1263, 1569, 1921, 2358, 2856, 3460, 4151, 4978, 5915, 7030, 8287, 9763, 11425, 13357, 15526, 18030, 20825, 24027, 27597, 31660, 36167, 41276, 46921
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} k.
a(n) = A308926(n) - A308927(n) - A308928(n) - A308929(n) - A308931(n) - A308932(n) - A308933(n).

A308931 Sum of the third largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 11, 19, 28, 42, 61, 88, 121, 171, 228, 307, 405, 531, 682, 880, 1111, 1403, 1750, 2174, 2670, 3281, 3983, 4827, 5807, 6965, 8291, 9861, 11641, 13718, 16080, 18804, 21881, 25423, 29392, 33921, 39001, 44753, 51163, 58411
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerPartitions[n,{7}][[All,3]]],{n,0,50}] (* Harvey P. Dale, Aug 15 2020 *)

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} j.
a(n) = A308926(n) - A308927(n) - A308928(n) - A308929(n) - A308930(n) - A308932(n) - A308933(n).

A308932 Sum of the second largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 27, 39, 61, 87, 128, 175, 249, 331, 450, 590, 779, 998, 1292, 1628, 2063, 2567, 3198, 3923, 4827, 5854, 7106, 8538, 10253, 12197, 14516, 17126, 20197, 23658, 27683, 32197, 37422, 43247, 49931, 57382, 65865, 75275
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[i, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} i.
a(n) = A308926(n) - A308927(n) - A308928(n) - A308929(n) - A308930(n) - A308931(n) - A308933(n).

A308933 Sum of the largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 9, 17, 27, 46, 69, 106, 153, 222, 307, 430, 577, 778, 1023, 1343, 1726, 2221, 2805, 3540, 4408, 5475, 6722, 8244, 10004, 12116, 14557, 17447, 20758, 24656, 29090, 34254, 40115, 46878, 54512, 63276, 73112, 84322, 96875, 111089
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m - o), {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} (n-i-j-k-l-m-o).
a(n) = A308926(n) - A308927(n) - A308928(n) - A308929(n) - A308930(n) - A308931(n) - A308932(n).
Previous Showing 11-20 of 24 results. Next