cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A326598 Sum of the largest parts of the partitions of n into 10 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 9, 17, 27, 46, 69, 108, 158, 234, 329, 471, 645, 891, 1198, 1614, 2125, 2808, 3637, 4718, 6029, 7699, 9709, 12243, 15265, 19013, 23473, 28933, 35381, 43211, 52396, 63436, 76343, 91710, 109580, 130720, 155171, 183884
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 13 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerPartitions[n,{10}][[;;,1]]],{n,0,50}] (* Harvey P. Dale, May 02 2025 *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (n-i-j-k-l-m-o-p-q-r).
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n).

A060029 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 10.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 12, 18, 19, 26, 29, 37, 40, 51, 53, 65, 68, 79, 80, 92, 87, 94, 84, 82, 58, 45, -1, -36, -109, -180, -297, -413, -594, -780, -1042, -1325, -1704, -2112, -2647, -3228, -3961, -4772, -5769, -6867, -8206, -9682, -11446, -13402, -15710
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+9 into 9 parts and the number of partitions of n+9 into 10 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), this sequence (N=10).

Programs

  • Mathematica
    CoefficientList[Series[(1-x-x^10)/Times@@(1-x^Range[10]),{x,0,60}],x] (* Harvey P. Dale, May 15 2016 *)

Formula

a(n) = A026815(n+9) - A026816(n+9). - Wesley Ivan Hurt, Apr 16 2019

A008639 Number of partitions of n into at most 10 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 128, 164, 212, 267, 340, 423, 530, 653, 807, 984, 1204, 1455, 1761, 2112, 2534, 3015, 3590, 4242, 5013, 5888, 6912, 8070, 9418, 10936, 12690, 14663, 16928, 19466, 22367, 25608, 29292, 33401, 38047
Offset: 0

Views

Author

Keywords

Comments

For n > 9: also number of partitions of n into parts <= 10: a(n) = A026820(n, 10). - Reinhard Zumkeller, Jan 21 2010

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Essentially same as A026816.
a(n) = A008284(n + 10, 10), n >= 0.
Cf. A266778 (first differences), A288345 (partial sums).

Programs

  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 10} ], {x, 0, 60} ], x ]
  • PARI
    Vec(1/prod(k=1,10,1-x^k)+O(x^99)) \\ Charles R Greathouse IV, May 06 2015

Formula

G.f.: 1/Product_{k=1..10} (1 - x^k). - David Neil McGrath, Apr 29 2015
a(n) = a(n-10) + A008638(n). - Vladimír Modrák, Sep 29 2020

A008641 Number of partitions of n into at most 12 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of partitions of n in which the greatest part is 12.
Also number of partitions of n into parts <= 12: a(n)=A026820(n,12). [Reinhard Zumkeller, Jan 21 2010]

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

a(n) = A008284(n+12, 12), n >= 0.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
    with(combstruct):ZL13:=[S,{S=Set(Cycle(Z,card<13))}, unlabeled]:seq(count(ZL13,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=12)},unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
    Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]

Formula

G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015

Extensions

More terms from Robert G. Wilson v, Dec 11 2000

A382864 Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 4, 3, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 1, 5, 7, 2, 0, 1, 6, 8, 3, 0, 1, 6, 10, 5, 0, 1, 7, 12, 6, 1, 0, 1, 7, 14, 9, 1, 0, 1, 8, 16, 11, 2, 0, 1, 8, 19, 15, 3, 0, 1, 9, 21, 18, 5, 0, 1, 9, 24, 23, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  1;
  0, 1, 3,  1;
  0, 1, 3,  2;
  0, 1, 4,  3;
  0, 1, 4,  4, 1;
  0, 1, 5,  5, 1;
  0, 1, 5,  7, 2;
  0, 1, 6,  8, 3;
  0, 1, 6, 10, 5;
  0, 1, 7, 12, 6, 1;
  ...
		

Crossrefs

Row sums give A000009.
Columns 0..10 give A000007, A000012, A004526(n-1), A069905(n-3), A026810(n-6), A026811(n-10), A026812(n-15), A026813(n-21), A026814(n-28), A026815(n-36), A026816(n-45).

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1-x^j).
T(n,k) = |A292047(n,k)| = |A292049(n,k)|.
Previous Showing 21-25 of 25 results.