A117488
The number 1 followed by 2*k+1 terms from column k of table A115994.
Original entry on oeis.org
1, 1, 2, 3, 1, 2, 5, 8, 14, 1, 2, 5, 10, 18, 30, 49, 1, 2, 5, 10, 20, 34, 59, 94, 149, 1, 2, 5, 10, 20, 36, 63, 104, 169, 264, 405, 1, 2, 5, 10, 20, 36, 65, 108, 179, 284, 445, 676, 1017, 1, 2, 5, 10, 20, 36, 65, 110, 183, 294, 465, 716, 1089, 1622, 2387, 1, 2, 5, 10, 20, 36, 65
Offset: 1
Column two of table A115994 begins 1 2 5 8 14 20 30 ... A006918
so row three of A117488 is 1 2 5 8 14.
Triangle starts
1
1 2 3
1 2 5 8 14
1 2 5 10 18 30 49
1 2 5 10 20 34 59 94 149
1 2 5 10 20 36 63 104 169 264 405
1 2 5 10 20 36 65 108 179 284 445 676 1017
1 2 5 10 20 36 65 110 183 294 465 716 1089 1622 2387
-
A026820 := proc(n,k) if k > n then combinat[numbpart](n,n) ; else combinat[numbpart](n,k) ; fi ; end: A115994 := proc(n,k) local i ; add(A026820(i,k)*A026820(n-k^2-i,k),i=0..n-k^2) ; end: A117488 := proc(n,k) if k >= 2*n then 0 ; else if n = 1 then 1; else A115994(k+n^2-2*n,n-1) ; fi ; fi ; end: for n from 1 to 10 do for k from 1 to 2*n-1 do printf("%d ",A117488(n,k)) ; od ; od ; # R. J. Mathar, Feb 22 2007
A097306
Array of number of partitions of n with odd parts not exceeding 2*m-1 with m in {1, 2, ..., ceiling(n/2)}.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 4, 1, 3, 4, 5, 1, 3, 5, 6, 1, 4, 6, 7, 8, 1, 4, 7, 9, 10, 1, 4, 8, 10, 11, 12, 1, 5, 9, 12, 14, 15, 1, 5, 10, 14, 16, 17, 18, 1, 5, 11, 16, 19, 21, 22, 1, 6, 13, 19, 23, 25, 26, 27, 1, 6, 14, 21, 26, 29, 31, 32, 1, 6, 15, 24, 30, 34, 36, 37, 38, 1, 7, 17, 27
Offset: 1
[1]; [1]; [1,2]; [1,2]; [1,2,3]; [1,3,4]; [1,3,4,5]; [1,3,5,6]; ...
T(8,2)=3 because there are three partitions of 8 with odd parts not exceeding 3, namely (1^8), (1^5,3) and (1^2,3^2).
T(6,2)=3 from the partitions (1^6), (1^3,3) and (3^2).
-
Sequence of row numbers for n>=1: [seq(coeff(series(product(1/(1-x^(2*k-1)),k=1..p),x,n+1),x,n),p=1..ceil(n/2))].
A249770
Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order n with k invariant factors (2 <= n, 1 <= k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
First rows:
1;
1;
1,1;
1;
1;
1;
1,1,1;
1,1;
1;
1;
1,1;
1;
1;
1;
1,2,1,1;
1;
...
-
f[{x_, y_}] := x^IntegerPartitions[y];
g[n_] := FactorInteger[n][[1, 1]];
h[list_] := Apply[Times,Map[PadRight[#, Max[Map[Length, SplitBy[list, g]]], 1] &,SplitBy[list, g]]]; t[list_] := Tally[Map[Length, list]][[All, 2]];
Map[t, Table[Map[h, Join @@@ Tuples[Map[f, FactorInteger[n]]]], {n, 2, 50}]] // Grid (* Geoffrey Critzer, Nov 26 2015 *)
A249771
Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order A025487(n) with k invariant factors (2 <= n, 1 <= k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 5, 2, 2, 1, 3, 1, 3, 3, 2, 1, 1, 1, 1, 3, 5, 1, 2
Offset: 2
First rows:
1;
1,1;
1;
1,1,1;
1,1;
1,2,1,1;
1,1,1;
1;
1,2,2,1,1;
1,3;
...
A008640
Number of partitions of n into at most 11 parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 131, 169, 219, 278, 355, 445, 560, 695, 863, 1060, 1303, 1586, 1930, 2331, 2812, 3370, 4035, 4802, 5708, 6751, 7972, 9373, 11004, 12866, 15021, 17475, 20298, 23501, 27169, 31316, 36043, 41373, 47420, 54218, 61903, 70515, 80215, 91058, 103226, 116792, 131970, 148847
Offset: 0
- A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 360
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, -1, -1, -1, -2, -1, -1, 0, -1, 2, 2, 2, 2, 1, 1, 0, -1, -1, -2, -2, -2, -2, 1, 0, 1, 1, 2, 1, 1, 1, 0, 0, -1, -2, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1).
-
1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)
with(combstruct):ZL12:=[S,{S=Set(Cycle(Z,card<12))},unlabeled]: seq(count(ZL12,size=n),n=0..44); # Zerinvary Lajos, Sep 24 2007
B:=[S,{S = Set(Sequence(Z,1 <= card),card <=11)},unlabelled]: seq(combstruct[count](B, size=n), n=0..44); # Zerinvary Lajos, Mar 21 2009
-
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 11} ], {x, 0, 60} ], x ]
A008641
Number of partitions of n into at most 12 parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
Offset: 0
- A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 361
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, -1, 0, 2, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, -2, 0, 1, 2, 2, 2, 2, 1, 1, 0, -1, -2, -1, -4, -1, -2, -1, 0, 1, 1, 2, 2, 2, 2, 1, 0, -2, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 2, 0, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
-
1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
with(combstruct):ZL13:=[S,{S=Set(Cycle(Z,card<13))}, unlabeled]:seq(count(ZL13,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
B:=[S,{S = Set(Sequence(Z,1 <= card),card <=12)},unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
-
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]
A134737
Number of partitions of the n-th partition number into positive parts not greater than n.
Original entry on oeis.org
1, 2, 3, 6, 13, 44, 131, 638, 3060, 22367, 167672, 2127747, 26391031, 537973241, 12274276512, 429819314124, 16928838590640, 1068323095351171, 75345432929798690, 8339062208354516217, 1083103359596125913021, 209256696715820656730807, 48414226122932084106352434
Offset: 1
-
with(numtheory): P:= proc(n) local d, j; P(n):= `if`(n=0, 1, add(add(d, d=divisors(j)) *P(n-j), j=1..n)/n) end: b:= proc(n,i) if n<0 then 0 elif n=0 then 1 elif i=0 then 0 else b(n,i):= b(n, i-1) +b(n-i, i) fi end: a:= n-> b(P(n),n): seq(a(n), n=1..25); # Alois P. Heinz, Jul 17 2009
-
(* first do *) Needs["DiscreteMath`IntegerPartitions`"] (* then *) a[n_] := Length@ IntegerPartitions[ PartitionsP[n], n] (* Robert G. Wilson v, Nov 11 2007 *)
P[n_] := P[n] = Module[{d, j}, If[n == 0, 1, Sum[DivisorSum[j, #&]*P[n - j], {j, 1, n}]/n]]; b [n_, i_] := b[n, i] = Which[n<0, 0, n == 0, 1, i == 0, 0, True, b[n, i] = b[n, i-1] + b[n-i, i]]; a[n_] := b[P[n], n]; Table [a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
A215520
Number T(n,k) of distinct values of multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n with largest part <= k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 10, 12, 13, 14, 1, 5, 10, 14, 17, 18, 19, 20, 1, 5, 12, 16, 21, 23, 25, 26, 27, 1, 6, 14, 20, 27, 29, 32, 34, 35, 36, 1, 6, 16, 22, 32, 35, 40, 43, 45, 46, 47, 1, 7, 19, 28, 40, 45, 52, 57, 60, 62, 63, 64
Offset: 1
T(3,2) = 2 = |{3!/(2!*1!), 3!/(1!*1!*1!)}| = |{3, 6}|.
T(5,2) = 3 = |{30, 60, 120}|.
T(7,4) = 10 = |{35, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040}|.
T(8,3) = 10 = |{560, 1120, 1680, 2520, 3360, 5040, 6720, 10080, 20160, 40320}|.
T(9,2) = 5 = |{22680, 45360, 90720, 181440, 362880}|.
Triangle T(n,k) begins:
1;
1, 2;
1, 2, 3;
1, 3, 4, 5;
1, 3, 5, 6, 7;
1, 4, 7, 9, 10, 11;
1, 4, 8, 10, 12, 13, 14;
1, 5, 10, 14, 17, 18, 19, 20;
1, 5, 12, 16, 21, 23, 25, 26, 27;
1, 6, 14, 20, 27, 29, 32, 34, 35, 36;
-
b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
{b(n, i-1)[], seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)}))
end:
T:= (n, k)-> nops(b(n, k)):
seq(seq(T(n, k), k=1..n), n=1..14);
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Join[b[n, i - 1], Table[ b[n - i*j, i - 1] *i!^j, {j, 1, n/i}] // Flatten]] // Union]; T[n_, k_] := Length[b[n, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
A382025
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of three kinds.
Original entry on oeis.org
1, 0, 3, 0, 3, 9, 0, 3, 12, 22, 0, 3, 18, 36, 51, 0, 3, 21, 57, 87, 108, 0, 3, 27, 82, 148, 193, 221, 0, 3, 30, 111, 225, 330, 393, 429, 0, 3, 36, 144, 333, 528, 681, 765, 810, 0, 3, 39, 184, 460, 808, 1106, 1316, 1424, 1479, 0, 3, 45, 225, 630, 1182, 1740, 2163, 2439, 2574, 2640
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 3]
2 : [0, 3, 9]
3 : [0, 3, 12, 22]
4 : [0, 3, 18, 36, 51]
5 : [0, 3, 21, 57, 87, 108]
6 : [0, 3, 27, 82, 148, 193, 221]
7 : [0, 3, 30, 111, 225, 330, 393, 429]
8 : [0, 3, 36, 144, 333, 528, 681, 765, 810]
9 : [0, 3, 39, 184, 460, 808, 1106, 1316, 1424, 1479]
10 : [0, 3, 45, 225, 630, 1182, 1740, 2163, 2439, 2574, 2640]
...
-
from sympy import binomial
from sympy.utilities.iterables import partitions
from sympy.combinatorics.partitions import IntegerPartition
kinds = 3 - 1 # the number of part kinds - 1
def a382025_row( n):
if n == 0 : return [1]
t = list( [0] * n)
for p in partitions( n):
p = IntegerPartition( p).as_dict()
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( kinds + p[k], kinds)
if s > 0 :
t[s - 1] += fact
for i in range( n - 1):
t[i+1] += t[i]
return [0] + t
A382045
Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into at most k parts with 0 <= k <= n.
Original entry on oeis.org
1, 0, 3, 0, 6, 12, 0, 10, 28, 38, 0, 15, 66, 102, 117, 0, 21, 126, 249, 309, 330, 0, 28, 236, 562, 788, 878, 906, 0, 36, 396, 1167, 1845, 2205, 2331, 2367, 0, 45, 651, 2292, 4128, 5289, 5814, 5982, 6027, 0, 55, 1001, 4272, 8703, 12106, 13881, 14602, 14818, 14873, 0, 66, 1512, 7608, 17634, 26616, 32088, 34608, 35556, 35826, 35892
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 3]
2 : [0, 6, 12]
3 : [0, 10, 28, 38]
4 : [0, 15, 66, 102, 117]
5 : [0, 21, 126, 249, 309, 330]
6 : [0, 28, 236, 562, 788, 878, 906]
7 : [0, 36, 396, 1167, 1845, 2205, 2331, 2367]
8 : [0, 45, 651, 2292, 4128, 5289, 5814, 5982, 6027]
9 : [0, 55, 1001, 4272, 8703, 12106, 13881, 14602, 14818, 14873]
10 : [0, 66, 1512, 7608, 17634, 26616, 32088, 34608, 35556, 35826, 35892]
...
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1))*binomial(i*(i+3)/2+j, j)*x^j, j=0..n/i))))
end:
T:= proc(n, k) option remember;
`if`(k<0, 0, T(n, k-1)+coeff(b(n$2), x, k))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 13 2025
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i*(i + 3)/2 + j, j]*x^j, {j, 0, n/i}]]]];
T[n_, k_] := T[n, k] = If[k < 0, 0, T[n, k-1] + Coefficient[b[n, n], x, k]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 21 2025, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.utilities.iterables import partitions
from sympy.combinatorics.partitions import IntegerPartition
colors = 3 - 1 # the number of colors - 1
def t_row( n):
if n == 0 : return [1]
t = list( [0] * n)
for p in partitions( n):
p = IntegerPartition( p).as_dict()
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k])
if s > 0 :
t[s - 1] += fact
for i in range( n - 1):
t[i+1] += t[i]
return [0] + t
Comments