cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A027179 a(n) = T(n,0) + T(n,1) + ... + T(n,[ n/2 ]), T given by A027170.

Original entry on oeis.org

1, 3, 15, 26, 81, 130, 350, 558, 1417, 2282, 5632, 9190, 22296, 36834, 88280, 147422, 349929, 589786, 1388672, 2359254, 5516356, 9437138, 21931190, 37748686, 87250096, 150994890, 347306730, 603979718, 1383135310, 2415919042
Offset: 0

Views

Author

Keywords

A027182 a(n) = self-convolution of row n of array T given by A027170.

Original entry on oeis.org

18, 150, 820, 3726, 15492, 61660, 240328, 928110, 3572692, 13749580, 52977216, 204478276, 790747504, 3063728856, 11891504944, 46231328174, 180005765748, 701823431740, 2739725128448, 10707198384348, 41888225645152, 164027934617024
Offset: 0

Views

Author

Keywords

A027184 a(n) = (1/2)*(n-th largest even number in array T given by A027170).

Original entry on oeis.org

5, 15, 21, 29, 38, 47, 69, 78, 95, 125, 132, 159, 181, 197, 236, 239, 285, 335, 370, 389, 395, 447, 492, 509, 523, 553, 575, 645, 719, 797, 874, 879, 895, 965, 1035, 1048, 1055, 1109, 1149, 1247, 1349, 1450, 1455, 1506, 1565, 1633, 1679, 1797, 1874, 1919, 1945, 2000
Offset: 1

Views

Author

Keywords

Formula

a(n) = A027183(n) / 2. - Sean A. Irvine, Oct 24 2019

Extensions

Corrected and extended by Sean A. Irvine, Oct 24 2019

A026907 Triangular array T read by rows (9-diamondization of Pascal's triangle). Step 1: t(n,k) = sum of 9 entries in diamond-shaped subarray of Pascal's triangle having vertices C(n,k), C(n+4,k+2), C(n+2,k), C(n+2,k+2). Step 2: T(n,k) = t(n,k) - t(0,0) + 1.

Original entry on oeis.org

1, 13, 13, 28, 44, 28, 46, 90, 90, 46, 67, 154, 198, 154, 67, 91, 239, 370, 370, 239, 91, 118, 348, 627, 758, 627, 348, 118, 148, 484, 993, 1403, 1403, 993, 484, 148, 181, 650, 1495, 2414, 2824, 2414, 1495, 650, 181, 217, 849, 2163, 3927, 5256, 5256, 3927, 2163, 849, 217
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
   1;
  13,  13;
  28,  44,  28;
  46,  90,  90,  46;
  67, 154, 198, 154,  67;
  91, 239, 370, 370, 239,  91;
  ...
		

Crossrefs

Sums: A026915 (row), A026916, A026917, A026918 (diagonal).

Programs

  • Magma
    A026907:= func< n,k | Binomial(n,k) + 3*Binomial(n+4,k+2) - 18 >;
    [A026907(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 21 2025
    
  • Mathematica
    t[n_, k_]:=Binomial[n + 4, k + 2 ] + Binomial[n + 3, k + 1] + Binomial[n + 3, k + 2] + Binomial[n + 2, k] + Binomial[n + 2, k + 1] + Binomial[n + 2, k + 2] + Binomial[n + 1, k] + Binomial[n + 1, k + 1] + Binomial[n, k] ; T[n_, k_]:=t[n,k] - t[0, 0] + 1; Flatten[Table[T[n, k], {n, 0, 9},{k, 0, n}]] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    alias(C, binomial);
    t(n,k) = C(n+4,k+2) + C(n+3,k+1) + C(n+3,k+2) + C(n+2,k) + C(n+2,k+1) + C(n+2,k+2) + C(n+1,k) + C(n+1,k+1) + C(n,k);
    T(n,k) = t(n,k)-t(0,0)+1;
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print());
    \\ Michel Marcus, Mar 13 2017
    
  • SageMath
    def A026907(n,k): return binomial(n,k) +3*binomial(n+4,k+2) -18
    print(flatten([[A026907(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Aug 21 2025

Formula

From G. C. Greubel, Aug 21 2025: (Start)
T(n, k) = binomial(n,k) + 3*binomial(n+4, k+2) - 18.
Sum_{k=0..n} (-1)^k*T(n, k) = 6*(1+(-1)^n)* floor((n+1)/2) + [n=0]. (End)

A027181 a(n) = Lucas(n+4) - 2*(n+3).

Original entry on oeis.org

1, 3, 8, 17, 33, 60, 105, 179, 300, 497, 817, 1336, 2177, 3539, 5744, 9313, 15089, 24436, 39561, 64035, 103636, 167713, 271393, 439152, 710593, 1149795, 1860440, 3010289, 4870785, 7881132, 12751977, 20633171, 33385212, 54018449, 87403729, 141422248
Offset: 0

Views

Author

Keywords

Comments

Let F be a homogeneous polynomial in n + 4 variables f0, f1, f2, g0, g1, ..., gn, defined as the determinant of a Sylvester matrix of polynomials f2*x^2 + f1*x + f0 and gn*x^n + ... + g1*x + g0. It appears that a(n) is equal to the l1-norm of F, i.e., the sum of absolute values of coefficients of F. - Anton Mosunov, Apr 13 2019

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+4)[2] -2*(n+3)); # G. C. Greubel, Jul 24 2019
  • Magma
    [Lucas(n+4) - (2*n+6): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1},{1,3,8,17},40] (* Vladimir Joseph Stephan Orlovsky, Jan 25 2012 *)
    Table[LucasL[n+4]-2*(n+3), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
  • PARI
    Vec((1 + x^2)/((1 - x)^2*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Mar 10 2017
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+5)+f(n+3)-2*(n+3)) \\ G. C. Greubel, Jul 24 2019
    
  • Sage
    [lucas_number2(n+4,1,-1) -2*(n+3) for n in range(40)] # G. C. Greubel, Apr 14 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} A027170(n-k, k).
G.f.: (1 + x^2)/((1 - x)^2*(1 - x - x^2)).
From Colin Barker, Mar 10 2017: (Start)
a(n) = -4 + (2^(-1-n)*((1-sqrt(5))^n*(-15+7*sqrt(5)) + (1+sqrt(5))^n*(15+7*sqrt(5))))/sqrt(5) - 2*(1+n).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>3.
(End)
Previous Showing 11-15 of 15 results.