cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A087107 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3).

Original entry on oeis.org

1, 1, 3, 3, 1, 1, 15, 69, 147, 162, 90, 20, 1, 63, 873, 5191, 16620, 31560, 36750, 25830, 10080, 1680, 1, 255, 9489, 130767, 919602, 3832650, 10238000, 18244380, 21990360, 17745000, 9198000, 2772000, 369600, 1, 1023, 97953, 2903071, 40317780
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

Let s_n denote the sequence (1, 4^n, 10^n, 20^n, ...) regarded as an infinite column vector, where 1, 4, 10, 20, ... is the sequence of tetrahedral numbers A000292. It appears that the n-th row of this table is determined by the matrix product P^(-1)s_n, where P denotes Pascal's triangle A007318. - Peter Bala, Nov 26 2017
From Peter Bala, Mar 11 2018: (Start)
The observation above is correct.
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+3,3)^p of degree 3*p in terms of falling factorials: C(x+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(n,k+1).
The sum of the p-th powers of the tetrahedral numbers is also given by Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 3..3*p} A299041(p,k)*C(n+3,k+1) for p >= 1. (End)

Examples

			Row 3 contains 1,15,69,147,162,90,20, so Sum_{i=1..n} C(i+2,3)^3 = 4 * C(n+3,4) * [ a(1,3)/4 + a(2,3)*C(n-1,1)/5 + a(3,3)*C(n-1,2)/6 + ... + a(7,3)*C(n-1,6)/10 ] = 4 * C(n+3,4) * [ 1/4 + 15*C(n-1,1)/5 + 69*C(n-1,2)/6 + 147*C(n-1,3)/7 + 162*C(n-1,4)/8 + 90*C(n-1,5)/9 + 20*C(n-1,6)/10 ]. Cf. A086021 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
n=0 | 1
n=1 | 1  3   3    1
n=2 | 1 15  69  147   162    90    20
n=3 | 1 63 873 5191 16620 31560 36750 25830 10080 1680
...
Row 2: C(i+3,3)^2 = C(i,0) + 15*C(i,1) + 69*C(i,2) + 147*C(i,3) + 162*C(i,4) + 90*C(i,5) + 20*C(i,6). Hence, Sum_{i = 0..n-1} C(i+3,3)^2 =  C(n,1) + 15*C(n,2) + 69*C(n,3) + 147*C(n,4) + 162*C(n,5) + 90*C(n,6) + 20*C(n,7). (End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+3, 3)^n, i= 0..k), k = 0..3*n), n = 0..8); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 4, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 3, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 3*p - 2}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 4, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 3, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 3*p-2, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+4, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+3, i-2*k)^(p-1) ].
From Peter Bala, Nov 26 2017: (Start)
Conjectural formula for table entries: T(n,k) = Sum_{j = 0..k} (-1)^(k+j)*binomial(k,j)*binomial(j+3,3)^n.
Conjecturally, the n-th row polynomial R(n,x) = 1/(1 + x)*Sum_{i >= 0} binomial(i+3,3)^n *(x/(1 + x))^n. (End)
From Peter Bala, Mar 11 2018: (Start)
The conjectures above are correct.
The following remarks assume the row and column indices start at 0.
T(n+1,k) = C(k+3,3)*T(n,k) + 3*C(k+2,3)*T(n,k-1) + 3*C(k+1,3)*T(n,k-2) + C(k,3)*T(n,k-3) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 3*n.
Sum_{k = 0..3*n} T(n,k)*binomial(x,k) = (binomial(x+3,3))^n.
x^3*R(n,x) = (1 + x)^3 * the n-th row polynomial of A299041.
R(n+1,x) = 1/3!*(1 + x)^3*(d/dx)^3 (x^3*R(n,x)).
(1 - x)^(3*n)*R(n,x/(1 - x)) gives the n-th row polynomial of A174266.
R(n,x) = (1 + x)^3 o (1 + x)^3 o ... o (1 + x)^3 (n factors), where o denotes the black diamond product of power series defined in Dukes and White. Note the polynomial x^3 o ... o x^3 (n factors) is the n-th row polynomial of A299041. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087111 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,7). The p-th row (p>=1) contains a(i,p) for i=1 to 7*p-6, where a(i,p) satisfies Sum_{i=1..n} C(i+6,7)^p = 8 * C(n+7,8) * Sum_{i=1..7*p-6} a(i,p) * C(n-1,i-1)/(i+7).

Original entry on oeis.org

1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 63, 1169, 10703, 58821, 214123, 545629, 1004307, 1356194, 1347318, 974862, 500346, 172788, 36036, 3432, 1, 511, 45633, 1589567, 29302889, 333924087, 2577462937, 14287393351, 59159005164, 188008120188
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+7,7)^p of degree 7*p in terms of falling factorials: C(x+7,7)^p = Sum_{k = 0..7*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+7,7)^p = Sum_{k = 0..7*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,63,1169,...,3432, so Sum_{i=1..n} C(i+6,7)^3 = 8 * C(n+7,8) * [ a(1,3)/8 + a(2,3)*C(n-1,1)/9 + a(3,3)*C(n-1,2)/10 + ... + a(15,3)*C(n-1,14)/22 ] = 8 * C(n+7,8) * [ 1/8 + 63*C(n-1,1)/9 + 1169*C(n-1,2)/10 + ... + 3432*C(n-1,14)/22 ]. Cf. A086030 for more details.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+7, 7)^n, i = 0..k), k = 0..7*n), n = 0..4); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 8, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 7, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 7*p - 6}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 8, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 7, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 7*p-6, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+8, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+7, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+7,7)^n. Equivalently, let v_n denote the sequence (1, 8^n, 36^n, 120^n, ...) regarded as an infinite column vector, where 1, 8, 36, 120, ... is the sequence binomial(n+7,7) - see A000580. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..7} C(7,i)*C(k+7-i,7)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 7*n.
n-th row polynomial R(n,x) = (1 + x)^7 o (1 + x)^7 o ... o (1 + x)^7 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/7!*(1 + x)^7 * (d/dx)^7(x^7*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+7,7)^n*x^i/(1 + x)^(i+1).
(End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A049017 Expansion of 1/((1-x)^7 - x^7).

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0

Views

Author

Keywords

Comments

Differs for n >= 7 (1717 vs. 1716) from A000579(n+6) = binomial(n+6,6); see also row 6 of A027555, A059481 and A213808. - M. F. Hasler, Mar 05 2017

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), this sequence (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
    
  • SageMath
    def A049017_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^7 - x^7) ).list()
    A049017_list(40) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^7 - x^7) = 1/((1-2*x)*(1-5*x+11*x^2-13*x^3+9*x^4-3*x^5+x^6)).

A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).

Original entry on oeis.org

1, 1, 4, 6, 4, 1, 1, 24, 176, 624, 1251, 1500, 1070, 420, 70, 1, 124, 3126, 33124, 191251, 681000, 1596120, 2543520, 2780820, 2058000, 987000, 277200, 34650, 1, 624, 49376, 1350624, 18308751, 146500500, 763418870, 2749648020, 7101675070, 13440210000
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+4,4)^p of degree 4*p in terms of falling factorials: C(x+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
  n = 0 | 1
  n = 1 | 1   4    6     4      1
  n = 2 | 1  24  176   624   1251   1500    1070  420  70
  n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
  ...
Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 =  C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+5, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+4, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+4,4)^n. Equivalently, let v_n denote the sequence (1, 5^n, 15^n, 35^n, ...) regarded as an infinite column vector, where 1, 5, 15, 35, ... is the sequence binomial(n+4,4) - see A000332. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = C(k+4,4)*T(n,k) + 4*C(k+3,4)*T(n,k-1) + 6*C(k+2,4)*T(n,k-2) + 4*C(k+1,4)*T(n,k-3) + C(k,4)*T(n,k-4) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 4*n.
n-th row polynomial R(n,x) = (1 + x)^4 o (1 + x)^4 o ... o (1 + x)^4 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n,x) = Sum_{i >= 0} binomial(i+4,4)^n*x^i/(1 + x)^(i+1).
R(n+1,x) = 1/4! * (1 + x)^4 * (d/dx)^4(x^4*R(n,x)).
(1 - x)^(4*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A236463. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087109 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,5). The p-th row (p>=1) contains a(i,p) for i=1 to 5*p-4, where a(i,p) satisfies Sum_{i=1..n} C(i+4,5)^p = 6 * C(n+5,6) * Sum_{i=1..5*p-4} a(i,p) * C(n-1,i-1)/(i+5).

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 1, 1, 35, 370, 1920, 5835, 11253, 14240, 11830, 6230, 1890, 252, 1, 215, 8830, 148480, 1352615, 7665757, 29224020, 78518790, 152794740, 218270220, 229279512, 175227360, 94864770, 34504470, 7567560, 756756, 1, 1295, 191890
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+5,5)^p of degree 5*p in terms of falling factorials: C(x+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,35,370,...,252, so Sum_{i=1..n} C(i+4,5)^3 = 6 * C(n+5,6) * [ a(1,3)/6 + a(2,3)*C(n-1,1)/7 + a(3,3)*C(n-1,2)/8 + ... + a(11,3)*C(n-1,10)/16 ] = 6 * C(n+5,6) * [ 1/6 + 35*C(n-1,1)/7 + 370*C(n-1,2)/8 + ... + 252*C(n-1,10)/16 ]. Cf. A086026 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
1
1  5  10   10    5     1
1 35 370 1920 5835 11253 14240 11830 6230 1890 252
...
Row 2: C(i+5,5)^2 = C(i,0) + 35*C(i,1) + 370*C(i,2) + 1920*C(i,3) + 5835*C(i,4) + 11253*C(i,5) + 14240*C(i,6) + 11830*C(i,7) + 6230*C(i,8) + 1890*C(i,9) + 252*C(i,10). Hence, Sum_{i = 0..n-1} C(i+5,5)^2 = C(n,1) + 35*C(n,2) + 370*C(n,3) + 1920*C(n,4) + 5835*C(n,5) + 11253*C(n,6) + 14240*C(n,7) + 11830*C(n,8) + 6230*C(n,9) + 1890*C(n,10) + 252*C(n,11). (End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+5, 5)^n, i = 0..k), k = 0..5*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 6, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 5, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 5*p - 4}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 6, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 5, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 5*p-4, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+6, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+5, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+5,5)^n. Equivalently, let v_n denote the sequence (1, 6^n, 21^n, 56^n, ...) regarded as an infinite column vector, where 1, 6, 21, 56, ... is the sequence binomial(n+5,5) - see A000389. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..5} C(5,i)*C(k+5-i,5)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 5*n.
n-th row polynomial R(n,x) = (1 + x)^5 o (1 + x)^5 o ... o (1 + x)^5 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/5!*(1 + x)^5 * (d/dx)^5(x^5*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+5,5)^n*x^i/(1 + x)^(i+1).
(1 - x)^(5*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237202. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087110 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,6). The p-th row (p>=1) contains a(i,p) for i=1 to 6*p-5, where a(i,p) satisfies Sum_{i=1..n} C(i+5,6)^p = 7 * C(n+6,7) * Sum_{i=1..6*p-5} a(i,p) * C(n-1,i-1)/(i+6).

Original entry on oeis.org

1, 1, 6, 15, 20, 15, 6, 1, 1, 48, 687, 4850, 20385, 55908, 104959, 137886, 127050, 80640, 33642, 8316, 924, 1, 342, 21267, 527876, 7020525, 58015362, 324610399, 1297791264, 3839203452, 8595153000, 14760228672, 19560928464, 19987430694
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+6,6)^p of degree 6*p in terms of falling factorials: C(x+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,48,687,...,924, so Sum_{i=1..n} C(i+5,6)^3 = 7 * C(n+6,7) * [ a(1,3)/7 + a(2,3)*C(n-1,1)/8 + a(3,3)*C(n-1,2)/9 + ... + a(13,3)*C(n-1,12)/19 ] = 7 * C(n+6,7) * [ 1/7 + 48*C(n-1,1)/8 + 687*C(n-1,2)/9 + ... + 924*C(n-1,12)/19 ]. Cf. A086028 for more details.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+6, 6)^n, i = 0..k), k = 0..6*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 7, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 6, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 6*p - 5}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 7, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 6, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 6*p-5, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+7, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+6, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+6,6)^n. Equivalently, let v_n denote the sequence (1, 7^n, 28^n, 84^n, ...) regarded as an infinite column vector, where 1, 7, 28, 84, ... is the sequence binomial(n+6,6) - see A000579. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..6} C(6,i)*C(k+6-i,6)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 6*n.
n-th row polynomial R(n,x) = (1 + x)^6 o (1 + x)^6 o ... o (1 + x)^6 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/6!*(1 + x)^6 * (d/dx)^6(x^6*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+6,6)^n*x^i/(1 + x)^(i+1).
(1 - x)^(6*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237252. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003
Previous Showing 11-16 of 16 results.