A056345
Number of bracelets of length n using exactly five different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 12, 150, 1200, 7905, 46400, 255636, 1346700, 6901725, 34663020, 171786450, 843130688, 4110958530, 19951305240, 96528492700, 466073976900, 2247627076731, 10832193571460, 52194109216950
Offset: 1
For a(5)=12, pair up the 24 permutations of BCDE, each with its reverse, such as BCDE-EDCB. Precede the first of each pair with an A, such as ABCDE. These are the 12 arrangements, all chiral. If we precede the second of each pair with an A, such as AEDCB, we get the chiral partner of each. - _Robert A. Russell_, Sep 27 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
a[n_] := T[n, 5];
Array[a, 22] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *)
k=5; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
A056346
Number of bracelets of length n using exactly six different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821952, 5874480, 39713550, 258136200, 1631273220, 10096734312, 61536377700, 370710950400, 2213749658880, 13132080672480, 77509456944318, 455754569692680
Offset: 1
For a(6)=60, pair up the 120 permutations of BCDEF, each with its reverse, such as BCDEF-FEDCB. Precede the first of each pair with an A, such as ABCDEF. These are the 60 arrangements, all chiral. If we precede the second of each pair with an A, such as AFEDCB, we get the chiral partner of each. - _Robert A. Russell_, Sep 27 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
a[n_] := T[n, 6];
Array[a, 21] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *)
k=6; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
-
a(n) = my(k=6); (k!/4) * (stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Sep 29 2018
A092481
Number of different sets of n-gons labeled 1...n such that all members of each set contain equivalent paths with increasing labels; i.e., the number of isotemporal classes of n-gons.
Original entry on oeis.org
1, 3, 3, 8, 9, 20, 29, 60, 93, 189, 315, 618, 1095, 2114, 3855, 7414, 13797, 26478, 49939, 95838, 182361, 350572, 671091, 1292604, 2485533, 4797616, 9256395, 17903928, 34636833, 67125304, 130150587, 252677904, 490853415, 954502948
Offset: 3
Benjamin de Bivort (bivort(AT)fas.harvard.edu), Apr 03 2004
- B. de Bivort, Isotemporal classes of n-gons, preprint, 2004.
- B. de Bivort, An introduction to temporal networks, preprint, 2004.
-
f[n_] := Block[{d = Divisors[n], c = Divisors[n/2]}, Switch[ Mod[n, 4], 0, (Plus @@ (2^(n/d - 1)EulerPhi[d]) - Plus @@ (2^(n/(2c) - 1)EulerPhi[2c]))/n + 2^((n - 4)/2) + 2^((n - 8)/4) - 2^(Ceiling[(n - 4)/8] - 1), 1, (Plus @@ ((2^(n/d - 1) - 1)EulerPhi[d]))/n, 2, (Plus @@ (2^(n/d - 1)EulerPhi[d]) - Plus @@ (2^(n/(2c) - 1)EulerPhi[2c]))/n + 2^((n - 4)/2), 3, (Plus @@ ((2^(n/d - 1) - 1)EulerPhi[d]))/n]]; Table[ f[n], {n, 3, 36}]
A214310
a(n) is the number of all three-color bracelets (necklaces with turning over allowed) with n beads and the three colors are from a repertoire of n distinct colors, for n >= 3.
Original entry on oeis.org
1, 24, 180, 1120, 5145, 23016, 91056, 357480, 1327095, 4893680, 17525508, 62254920, 217457695, 753332160, 2581110000, 8779264032, 29624681763, 99350001360, 331159123260, 1098168382080, 3624003213369, 11908069219816, 38972450763000, 127087400895000
Offset: 3
a(5) = A213941(5,4) + A213941(5,5) = 60 + 120 = 180 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11123 and 11213, both taken cyclically, each representing a class of order A035206(5,4)= 30 (if all 5 colors are used), and 11223, 11232, 12123 and 12213, all taken cyclically, each representing a class of order A035206(5,5)= 30. For example, cyclic(11322) becomes equivalent to cyclic(11223) by turning over or reflection. The multiplicity A035206 depends only on the color signature.
A032294
Number of aperiodic bracelets (turnover necklaces) with n beads of 3 colors.
Original entry on oeis.org
3, 3, 7, 15, 36, 79, 195, 477, 1209, 3168, 8415, 22806, 62412, 172887, 481552, 1351485, 3808080, 10780653, 30615351, 87226932, 249144506, 713378655, 2046856563, 5884468110, 16946569332, 48883597728, 141217159239
Offset: 1
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to bracelets
-
mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 28 2016 *)
-
a(x, k) = sum(n=1, 40, moebius(n) * (-log(1 - k*x^n )/n + sum(i=0, 2, binomial(k, i) * x^(n*i)) / (1 - k* x^(2*n)))/2);
Vec(a(x, 3) + O(x^41)) \\ Indranil Ghosh, Mar 29 2017
Comments