cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A067964 Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.

Original entry on oeis.org

2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Formula

Limit n->infinity (a(n))^(1/n^2) = 1.503048082... (see A085850)

Extensions

Terms a(14)-a(18) from Vaclav Kotesovec, May 01 2012

A286513 Array read by antidiagonals: T(m,n) is the number of independent sets in the stacked prism graph C_m X P_n.

Original entry on oeis.org

1, 1, 3, 1, 7, 4, 1, 17, 13, 7, 1, 41, 43, 35, 11, 1, 99, 142, 181, 81, 18, 1, 239, 469, 933, 621, 199, 29, 1, 577, 1549, 4811, 4741, 2309, 477, 47, 1, 1393, 5116, 24807, 36211, 26660, 8303, 1155, 76, 1, 3363, 16897, 127913, 276561, 307983, 143697, 30277, 2785, 123
Offset: 1

Views

Author

Andrew Howroyd, May 10 2017

Keywords

Comments

Equivalently, the number of vertex covers in the stacked prism graph C_m X P_n.

Examples

			Table starts:
=============================================================
m\n|   1    2     3      4        5         6           7
---|---------------------------------------------------------
1  |   1    1     1      1        1         1           1 ...
2  |   3    7    17     41       99       239         577 ...
3  |   4   13    43    142      469      1549        5116 ...
4  |   7   35   181    933     4811     24807      127913 ...
5  |  11   81   621   4741    36211    276561     2112241 ...
6  |  18  199  2309  26660   307983   3557711    41097664 ...
7  |  29  477  8303 143697  2488431  43089985   746156517 ...
8  |  47 1155 30277 788453 20546803 535404487 13951571713 ...
...
		

Crossrefs

Rows 3..8 are A003688(n+1), A051926, A181989, A181961, A182014, A182019.
Columns 1..4 are A000032, A051927, A050400, A050401.
Main diagonal is A212270.
Cf. A089934 (P_m X P_n), A027683, A286514.

A067959 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.

Original entry on oeis.org

1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

a(13) from Vaclav Kotesovec, Aug 22 2016
a(14) from Vaclav Kotesovec, May 24 2021
a(15) from Sean A. Irvine, Jan 14 2024

A066865 Number of binary arrangements without adjacent 1's on n X n staggered hexagonal torus bent for odd n.

Original entry on oeis.org

1, 5, 22, 217, 4726, 164258, 14840533, 1834600977, 669877863205, 296979228487760, 434542100979981567, 692625866382651263578, 4053364289624915167879497, 23237986479606982160703729647, 543749373021017146939376423644362, 11213018647250714014261414954480048385
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Examples

			Neighbors for n=4:
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
Neighbors for n=5:
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Cf. A006506, A027683, A066863, A066864, A066866, A067967 (shifted instead of bent).
Row sums of A067015.

Extensions

More terms from Sean A. Irvine, Nov 18 2023

A212270 Number of ways to place k non-attacking wazirs on an n x n cylindrical chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 7, 43, 933, 36211, 3557711, 746156517, 363549830913, 394677987525997, 974602314570939359, 5418730454986467701985, 68176187476467835406646029, 1936241516342334422813929891295, 124281423643836238320564876791634465, 18018270577720149773239661332878801006033
Offset: 1

Views

Author

Vaclav Kotesovec, May 12 2012

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Main diagonal of A286513.

Formula

Limit n ->infinity (a(n))^(1/n^2) is the hard square entropy constant A085850.

A066863 Number of binary arrangements without adjacent 1's on n X n staggered hexagonal grid.

Original entry on oeis.org

2, 6, 43, 557, 14432, 719469, 70372090, 13351521479, 4941545691252, 3559349503024593, 4993739972681894885, 13642580224488264353504, 72582736229683196932680697, 751993955499337790653321567382, 15172223086707160824288341875907978
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Examples

			Neighbors for n=4:
o--o--o--o
| /|\ | /|
|/ | \|/ |
o--o--o--o
| /|\ | /|
|/ | \|/ |
o--o--o--o
| /|\ | /|
|/ | \|/ |
o--o--o--o
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Extensions

More terms from Sean A. Irvine, Nov 15 2023

A182408 Number of ways to place k non-attacking knights on an n x n toroidal chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 7, 34, 743, 1546, 598078, 6027057, 10163241031, 242407820869
Offset: 1

Views

Author

Vaclav Kotesovec, May 09 2012

Keywords

Crossrefs

A270247 Number of matchings in the n X n torus grid graph C_n X C_n.

Original entry on oeis.org

1, 7, 370, 41025, 15637256, 23079663560, 127193770624285, 2645142169931308801, 206932904585998805434690, 60953421285412135689567940992, 67583556205239600880061198746186383, 282092296203355454009618109524478429807744
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2016

Keywords

Comments

C_{n} X C_{n} is also known as the (n,n)-torus grid graph.

Crossrefs

A201626 Number of ways to place n nonattacking wazirs on an n X n toroidal board.

Original entry on oeis.org

1, 2, 6, 228, 6745, 252792, 11281312, 585632520, 34690541994, 2309813476870, 170797663069044, 13888215374348892, 1231730727253607451, 118329596584708240732, 12241103359460777972760, 1356712722052907806912016
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 03 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Asymptotics: a(n) ~ n^(2n)/n!*exp(-5/2).

A321250 Number of maximal independent vertex sets in the n X n torus grid graph.

Original entry on oeis.org

1, 2, 6, 42, 220, 3644, 62272, 1794762, 83280570, 6210321492
Offset: 1

Views

Author

Eric W. Weisstein, Nov 01 2018

Keywords

Crossrefs

Cf. A027683.

Programs

  • Mathematica
    Table[Length@FindIndependentVertexSet[GraphProduct[CycleGraph[n], CycleGraph[n], "Cartesian"], Infinity, All], {n, 3, 8}] (* Eric W. Weisstein, Jan 26 2024 *)
  • Python
    from networkx import find_cliques, complement, cartesian_product, cycle_graph
    def A321250(n): return sum(1 for c in find_cliques(complement(cartesian_product(cycle_graph(n),cycle_graph(n))))) # Chai Wah Wu, Jan 11 2024

Extensions

a(1), a(2), and a(10) from Andrew Howroyd, Nov 01 2018
Previous Showing 11-20 of 20 results.