cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
Offset: 1

Views

Author

Martin Renner, Jun 08 2013

Keywords

Comments

The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).

Examples

			The table T(k,m), m = 1..A059892(k), begins
  1, 3, 9;
  11, 33, 99;
  27, 37, 111, 333, 999;
  etc.
		

Crossrefs

Programs

  • Maple
    a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
  • PARI
    Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ Jianing Song, Jun 15 2021

A135365 a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4), with initial values 1,3,9,11.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 313, 939, 2817, 8435, 25305, 75915, 227761, 683283, 2049849, 6149531, 18448593, 55345779, 166037353, 498112059, 1494336177, 4483008515, 13449025545, 40347076635, 121041229921, 363123689763, 1089371069289, 3268113207851, 9804339623553
Offset: 0

Views

Author

Paul Curtz, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1, 3}, LinearRecurrence[{3, 0, -1, 3}, {9, 11, 33, 99}, 25]] (* G. C. Greubel, Oct 11 2016 *)
  • PARI
    Vec((1-15*x^3)/((1+x)*(1-3*x)*(1-x+x^2)) + O(x^40)) \\ Colin Barker, Feb 10 2016

Formula

From Richard Choulet, Jan 02 2008: (Start)
a(n) = (1/7)*3^(n+1) + (4/3)*(-1)^n - (16/21)*cos(Pi*n/3) + (16*sqrt(3)/7)*sin(Pi*n/3).
a(n) = (1/7)*3^(n+1) + (1/7)*[4; 12; 36; -4; -12; -36] for n>=0. (End)
G.f.: (1 - 15*x^3) / ((1+x)*(1-3*x)*(1-x+x^2)). - Colin Barker, Feb 10 2016

A069858 1/n has period 4 in base 10.

Original entry on oeis.org

101, 202, 303, 404, 505, 606, 808, 909, 1010, 1111, 1212, 1515, 1616, 1818, 2020, 2222, 2424, 2525, 3030, 3232, 3333, 3636, 4040, 4444, 4545, 4848, 5050, 5555, 6060, 6464, 6666, 7272, 7575, 8080, 8888, 9090, 9696, 9999, 10100, 11110, 12120, 12625
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			1212 is in the sequence since 1/1212=0.0008250825082508250825082508250....
		

Crossrefs

Programs

  • Mathematica
    Select[Range[13000],Length[RealDigits[1/#][[1,-1]]]==4&] (* Harvey P. Dale, Jun 30 2017 *)

Formula

Numbers of the form a*b*c where a is in {101, 303, 909, 1111, 3333, 9999}, b is a power of 2 and c is a power of 5.
Previous Showing 11-13 of 13 results.