A186236
G.f.: exp( Sum_{n>=0} [ Sum_{k=0..2*n} A027907(n,k)^2 * x^k ]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 2, 5, 13, 34, 93, 262, 753, 2198, 6502, 19449, 58724, 178739, 547836, 1689407, 5237939, 16318137, 51056027, 160363129, 505456920, 1598263936, 5068483189, 16116397411, 51371962474, 164123564499, 525447953073, 1685534207788, 5416719384326, 17437073203711
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 34*x^5 + 93*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 91*x^5/5 + 282*x^6/6 + 890*x^7/7 + 2831*x^8/8 + 9055*x^9/9 + 29133*x^10/10 +...
which equals the sum of the series:
log(A(x)) = (1 + x + x^2)*x
+ (1 + 2^2*x + 3^2*x^2 + 2^2*x^3 + x^4)*x^2/2
+ (1 + 3^2*x + 6^2*x^2 + 7^2*x^3 + 6^2*x^4 + 3*x^5 + x^6)*x^3/3
+ (1 + 4^2*x + 10^2*x^2 + 16^2*x^3 + 19^2*x^4 + 16^2*x^5 + 10^2*x^6 + 4^2*x^7 + x^8)*x^4/4
+ (1 + 5^2*x + 15^2*x^2 + 30^2*x^3 + 45^2*x^4 + 51^2*x^5 + 45^2*x^6 + 30^2*x^7 + 15^2*x^8 + 5^2*x^9 + x^10)*x^5/5 +...
-
{A027907(n,k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, 2*m, A027907(m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
A099602
Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907), omitting leading zeros.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 1, 5, 8, 5, 1, 3, 13, 22, 18, 7, 1, 1, 9, 26, 35, 24, 8, 1, 4, 26, 70, 101, 84, 40, 10, 1, 1, 14, 61, 131, 160, 116, 49, 11, 1, 5, 45, 171, 363, 476, 400, 215, 71, 13, 1, 1, 20, 120, 363, 654, 752, 565, 275, 83, 14, 1, 6, 71, 356, 1017, 1856, 2282, 1932
Offset: 0
Rows begin:
1;
1, 1;
1, 2, 1;
2, 5, 4, 1;
1, 5, 8, 5, 1;
3, 13, 22, 18, 7, 1;
1, 9, 26, 35, 24, 8, 1;
4, 26, 70, 101, 84, 40, 10, 1;
1, 14, 61, 131, 160, 116, 49, 11, 1;
5, 45, 171, 363, 476, 400, 215, 71, 13, 1;
1, 20, 120, 363, 654, 752, 565, 275, 83, 14, 1;
...
The binomial transform of row 2 = column 2 of A027907: BINOMIAL[1,2,1] = [1,3,6,10,15,21,28,36,45,55,...].
The binomial transform of row 3 = column 3 of A027907: BINOMIAL[2,5,4,1] = [2,7,16,30,50,77,112,156,210,...].
The binomial transform of row 4 = column 4 of A027907: BINOMIAL[1,5,8,5,1] = [1,6,19,45,90,161,266,414,615,...].
The binomial transform of row 5 = column 5 of A027907: BINOMIAL[3,13,22,18,7,1] = [3,16,51,126,266,504,882,1452,...].
-
{T(n,k)=polcoeff(polcoeff((1+(y+1)*x-(y+1)*x^2)/(1-(y+1)*(y+2)*x^2+(y+1)^2*x^4)+x*O(x^n),n,x)+y*O(y^k),k,y)}
-
{T(n,k)=(matrix(n+1,n+1,i,j,if(i>=j,polcoeff(polcoeff( (1+x*y/(1+x))/(1+x-y^2*(1-(1+4*x+O(x^i))^(1/2))^2/4+O(y^j)),i-1,x),j-1,y)))^-1)[n+1,k+1]}
A168590
G.f.: exp( Sum_{n>=1} A168591(n)*x^n/n ), where A168591(n) = sum of the n-th power of the trinomial coefficients in row n of triangle A027907.
Original entry on oeis.org
1, 3, 14, 310, 71399, 153056789, 2826352872319, 445742192193898313, 602479884829000885595175, 7000510736697461064666950774905, 701725717683874683612335083605682943282
Offset: 0
G.f.: A(x) = 1 + 3*x + 14*x^2 + 310*x^3 + 71399*x^4 +...
log(A(x)) = 3*x + 19*x^2/2 + 831*x^3/3 + 281907*x^4/4 +...+ A168591(n)*x^n/n +...
-
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sum(k=0,2*m,polcoeff((1+x+x^2)^m,k)^m)*x^m/m) +x*O(x^n)),n))}
A168595
a(n) = Sum_{k=0..2n} C(2n,k)*A027907(n,k) where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 4, 36, 358, 3748, 40404, 443886, 4941654, 55555236, 629285416, 7170731236, 82108083204, 943960439086, 10889085499348, 125974782200478, 1461030555025458, 16981658850393252, 197757344280343968
Offset: 0
-
cb := n -> binomial(2*n, n);
a := n -> add((-1)^(n-k)*binomial(n,k)*cb(n+k), k=0..n);
seq(a(n), n=0..17); # Peter Luschny, Aug 15 2017
-
{a(n)=sum(k=0,2*n,binomial(2*n,k)*polcoeff((1+x+x^2)^n,k))}
Original entry on oeis.org
1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
Offset: 0
-
seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # Robert Israel, Oct 20 2016
-
Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
100}] (* Emanuele Munarini, Oct 20 2016 *)
-
makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */
A099603
Row sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
Original entry on oeis.org
1, 2, 4, 12, 20, 64, 104, 336, 544, 1760, 2848, 9216, 14912, 48256, 78080, 252672, 408832, 1323008, 2140672, 6927360, 11208704, 36272128, 58689536, 189923328, 307302400, 994451456, 1609056256, 5207015424, 8425127936, 27264286720, 44114542592, 142757658624, 230986743808
Offset: 0
Sequence begins: {1*1, 1*2, 2*2, 3*4, 5*4, 8*8, 13*8, 21*16, 34*16, ...}.
-
LinearRecurrence[{0,6,0,-4},{1,2,4,12},30] (* Harvey P. Dale, Aug 09 2016 *)
-
a(n)=fibonacci(n+1)*2^((n+1)\2)
A168593
G.f.: exp( Sum_{n>=1} A132303(n)*x^n/n ), where A132303(n) = sum of the cubes of the trinomial coefficients in row n of triangle A027907.
Original entry on oeis.org
1, 3, 27, 349, 5484, 96408, 1824758, 36393090, 754696998, 16130052394, 353134333470, 7884110379006, 178908263232959, 4115917059924057, 95806493175049929, 2252809457441037107, 53443567449376649304
Offset: 0
G.f.: A(x) = 1 + 3*x + 27*x^2 + 349*x^3 + 5484*x^4 + 96408*x^5 +...
log(A(x)) = 3*x + 45*x^2/2 + 831*x^3/3 + 17181*x^4/4 + 375903*x^5/5 +...+ A132303(n)*x^n/n +...
-
{A027907(n,k) = polcoeff((1+x+x^2)^n, k)}
{A132303(n) = sum(k=0, 2*n, A027907(n,k)^3)}
{a(n) = local(A); A = exp(sum(m=1, n+1, A132303(m)*x^m/m) +x*O(x^n)); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A199248
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^k]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 248, 923, 3523, 13706, 54152, 216710, 876607, 3578405, 14722432, 60986158, 254145337, 1064712328, 4481577078, 18943753140, 80381689202, 342254333393, 1461864544896, 6262021627055, 26894816382199, 115792035533779, 499648608539714, 2160504474956390
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 69*x^5 + 248*x^6 + 923*x^7 +...
such that A(x) = G(x*A(x)) where G(x) is given by:
G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2 = (1-x^5)/(1-x) + x^3/(1-x)^2:
G(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 +...
...
Let A = x*A(x), then the logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + A + A^2)*x +
(1 + 2^2*A + 3^2*A^2 + 2^2*A^3 + A^4)*x^2/2 +
(1 + 3^2*A + 6^2*A^2 + 7^2*A^3 + 6^2*A^4 + 3^2*A^5 + A^6)*x^3/3 +
(1 + 4^2*A + 10^2*A^2 + 16^2*A^3 + 19^2*A^4 + 16^2*A^5 + 10^2*A^6 + 4^2*A^7 + A^8)*x^4/4 +
(1 + 5^2*A + 15^2*A^2 + 30^2*A^3 + 45^2*A^4 + 51^2*A^5 + 45^2*A^6 + 30^2*A^7 + 15^2*A^8 + 5^2*A^9 + A^10)*x^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
-
{a(n)=local(A=1+x); A=1/x*serreverse(x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12+x*O(x^n))); polcoeff(A, n)}
-
/* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*A^k) *x^m/m)+x*O(x^n)));polcoeff(A, n)}
A027915
a(n) = Sum_{0<=j<=i, 0<=i<=n} A027907(i, j).
Original entry on oeis.org
1, 3, 9, 26, 76, 223, 658, 1948, 5782, 17193, 51194, 152594, 455209, 1358841, 4058439, 12126696, 36248370, 108385917, 324172566, 969801726, 2901883611, 8684735577, 25995833145, 77824036620, 233012973051, 697745695923
Offset: 0
A099604
Antidiagonal sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 23, 40, 72, 131, 233, 420, 756, 1355, 2438, 4381, 7868, 14144, 25413, 45661, 82058, 147444, 264943, 476092, 855483, 1537236, 2762296, 4963591, 8919173, 16027012, 28799164, 51749715, 92989886, 167094985, 300255720
Offset: 0
-
LinearRecurrence[{0, 2, 3, 0, -2, -1}, {1, 1, 2, 4, 7, 12}, 35] (* Jean-François Alcover, Oct 30 2017 *)
-
a(n)=polcoeff((1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6)+x*O(x^n),n,x)
Comments