cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 162 results. Next

A186236 G.f.: exp( Sum_{n>=0} [ Sum_{k=0..2*n} A027907(n,k)^2 * x^k ]* x^n/n ), where A027907 is the triangle of trinomial coefficients.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 93, 262, 753, 2198, 6502, 19449, 58724, 178739, 547836, 1689407, 5237939, 16318137, 51056027, 160363129, 505456920, 1598263936, 5068483189, 16116397411, 51371962474, 164123564499, 525447953073, 1685534207788, 5416719384326, 17437073203711
Offset: 0

Views

Author

Paul D. Hanna, Oct 19 2011

Keywords

Comments

Trinomial coefficients satisfy: Sum_{k=0..2*n} A027907(n,k)*x^k = (1+x+x^2)^n.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 34*x^5 + 93*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 91*x^5/5 + 282*x^6/6 + 890*x^7/7 + 2831*x^8/8 + 9055*x^9/9 + 29133*x^10/10 +...
which equals the sum of the series:
log(A(x)) = (1 + x + x^2)*x
+ (1 + 2^2*x + 3^2*x^2 + 2^2*x^3 + x^4)*x^2/2
+ (1 + 3^2*x + 6^2*x^2 + 7^2*x^3 + 6^2*x^4 + 3*x^5 + x^6)*x^3/3
+ (1 + 4^2*x + 10^2*x^2 + 16^2*x^3 + 19^2*x^4 + 16^2*x^5 + 10^2*x^6 + 4^2*x^7 + x^8)*x^4/4
+ (1 + 5^2*x + 15^2*x^2 + 30^2*x^3 + 45^2*x^4 + 51^2*x^5 + 45^2*x^6 + 30^2*x^7 + 15^2*x^8 + 5^2*x^9 + x^10)*x^5/5 +...
		

Crossrefs

Cf. A180718 (variant).

Programs

  • PARI
    {A027907(n,k)=polcoeff((1+x+x^2)^n, k)}
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, 2*m, A027907(m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}

A099602 Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907), omitting leading zeros.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 1, 5, 8, 5, 1, 3, 13, 22, 18, 7, 1, 1, 9, 26, 35, 24, 8, 1, 4, 26, 70, 101, 84, 40, 10, 1, 1, 14, 61, 131, 160, 116, 49, 11, 1, 5, 45, 171, 363, 476, 400, 215, 71, 13, 1, 1, 20, 120, 363, 654, 752, 565, 275, 83, 14, 1, 6, 71, 356, 1017, 1856, 2282, 1932
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Comments

Row sums form A099603, where A099603(n) = Fibonacci(n+1)*2^floor((n+1)/2). Central coefficients of even-indexed rows form A082759, where A082759(n) = Sum_{k=0..n} binomial(n,k)*trinomial(n,k). Antidiagonal sums form A099604.
Matrix inverse equals triangle A104495, which is generated from self-convolutions of the Catalan sequence (A000108).

Examples

			Rows begin:
  1;
  1,  1;
  1,  2,   1;
  2,  5,   4,   1;
  1,  5,   8,   5,   1;
  3, 13,  22,  18,   7,   1;
  1,  9,  26,  35,  24,   8,   1;
  4, 26,  70, 101,  84,  40,  10,   1;
  1, 14,  61, 131, 160, 116,  49,  11,  1;
  5, 45, 171, 363, 476, 400, 215,  71, 13,  1;
  1, 20, 120, 363, 654, 752, 565, 275, 83, 14, 1;
  ...
The binomial transform of row 2 = column 2 of A027907: BINOMIAL[1,2,1] = [1,3,6,10,15,21,28,36,45,55,...].
The binomial transform of row 3 = column 3 of A027907: BINOMIAL[2,5,4,1] = [2,7,16,30,50,77,112,156,210,...].
The binomial transform of row 4 = column 4 of A027907: BINOMIAL[1,5,8,5,1] = [1,6,19,45,90,161,266,414,615,...].
The binomial transform of row 5 = column 5 of A027907: BINOMIAL[3,13,22,18,7,1] = [3,16,51,126,266,504,882,1452,...].
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff((1+(y+1)*x-(y+1)*x^2)/(1-(y+1)*(y+2)*x^2+(y+1)^2*x^4)+x*O(x^n),n,x)+y*O(y^k),k,y)}
    
  • PARI
    {T(n,k)=(matrix(n+1,n+1,i,j,if(i>=j,polcoeff(polcoeff( (1+x*y/(1+x))/(1+x-y^2*(1-(1+4*x+O(x^i))^(1/2))^2/4+O(y^j)),i-1,x),j-1,y)))^-1)[n+1,k+1]}

Formula

G.f.: (1 + (y+1)*x - (y+1)*x^2)/(1 - (y+1)*(y+2)*x^2 + (y+1)^2*x^4).

A168590 G.f.: exp( Sum_{n>=1} A168591(n)*x^n/n ), where A168591(n) = sum of the n-th power of the trinomial coefficients in row n of triangle A027907.

Original entry on oeis.org

1, 3, 14, 310, 71399, 153056789, 2826352872319, 445742192193898313, 602479884829000885595175, 7000510736697461064666950774905, 701725717683874683612335083605682943282
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2009

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 14*x^2 + 310*x^3 + 71399*x^4 +...
log(A(x)) = 3*x + 19*x^2/2 + 831*x^3/3 + 281907*x^4/4 +...+ A168591(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sum(k=0,2*m,polcoeff((1+x+x^2)^m,k)^m)*x^m/m) +x*O(x^n)),n))}

A168595 a(n) = Sum_{k=0..2n} C(2n,k)*A027907(n,k) where A027907 is the triangle of trinomial coefficients.

Original entry on oeis.org

1, 4, 36, 358, 3748, 40404, 443886, 4941654, 55555236, 629285416, 7170731236, 82108083204, 943960439086, 10889085499348, 125974782200478, 1461030555025458, 16981658850393252, 197757344280343968
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2009

Keywords

Comments

Compare to A092765(n) = Sum_{k=0..2n} (-1)^k*C(2n,k)*A027907(n,k), which is the number of paths of length n ending at origin in 1-D random walk with jumps to next-nearest neighbors.

Crossrefs

Programs

  • Maple
    cb := n -> binomial(2*n, n);
    a := n -> add((-1)^(n-k)*binomial(n,k)*cb(n+k), k=0..n);
    seq(a(n), n=0..17); # Peter Luschny, Aug 15 2017
  • PARI
    {a(n)=sum(k=0,2*n,binomial(2*n,k)*polcoeff((1+x+x^2)^n,k))}

Formula

a(n) = 2*A132306(n) for n > 0. - Mark van Hoeij, Jul 02 2010
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*cb(n+k) with cb(n) = binomial(2n,n). - Peter Luschny, Aug 15 2017

A027913 T(n,[ n/2 ]), T given by A027907.

Original entry on oeis.org

1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
Offset: 0

Views

Author

Keywords

Comments

The median coefficient in the expansion of (1 + x + x^2)^n. - Vladimir Reshetnikov, Nov 21 2020

Crossrefs

Programs

  • Maple
    seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # Robert Israel, Oct 20 2016
  • Mathematica
    Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
    100}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */

Formula

a(n) = GegenbauerC(floor(n/2), -n, -1/2). - Emanuele Munarini, Oct 18 2016
G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - Emanuele Munarini, Oct 20 2016

A099603 Row sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).

Original entry on oeis.org

1, 2, 4, 12, 20, 64, 104, 336, 544, 1760, 2848, 9216, 14912, 48256, 78080, 252672, 408832, 1323008, 2140672, 6927360, 11208704, 36272128, 58689536, 189923328, 307302400, 994451456, 1609056256, 5207015424, 8425127936, 27264286720, 44114542592, 142757658624, 230986743808
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Examples

			Sequence begins: {1*1, 1*2, 2*2, 3*4, 5*4, 8*8, 13*8, 21*16, 34*16, ...}.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-4},{1,2,4,12},30] (* Harvey P. Dale, Aug 09 2016 *)
  • PARI
    a(n)=fibonacci(n+1)*2^((n+1)\2)

Formula

a(n) = Fibonacci(n+1)*2^((n+1)/2).
a(n) = 6*a(n-2) - 4*a(n-4) for n>4.
G.f.: (1+2*x-2*x^2)/(1-6*x^2+4*x^4).

A168593 G.f.: exp( Sum_{n>=1} A132303(n)*x^n/n ), where A132303(n) = sum of the cubes of the trinomial coefficients in row n of triangle A027907.

Original entry on oeis.org

1, 3, 27, 349, 5484, 96408, 1824758, 36393090, 754696998, 16130052394, 353134333470, 7884110379006, 178908263232959, 4115917059924057, 95806493175049929, 2252809457441037107, 53443567449376649304
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2009

Keywords

Comments

Self-convolution cube-root yields the integer sequence A251686.

Examples

			G.f.: A(x) = 1 + 3*x + 27*x^2 + 349*x^3 + 5484*x^4 + 96408*x^5 +...
log(A(x)) = 3*x + 45*x^2/2 + 831*x^3/3 + 17181*x^4/4 + 375903*x^5/5 +...+ A132303(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {A027907(n,k) = polcoeff((1+x+x^2)^n, k)}
    {A132303(n) = sum(k=0, 2*n, A027907(n,k)^3)}
    {a(n) = local(A); A = exp(sum(m=1, n+1, A132303(m)*x^m/m) +x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A199248 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^k]* x^n/n ), where A027907 is the triangle of trinomial coefficients.

Original entry on oeis.org

1, 1, 2, 6, 20, 69, 248, 923, 3523, 13706, 54152, 216710, 876607, 3578405, 14722432, 60986158, 254145337, 1064712328, 4481577078, 18943753140, 80381689202, 342254333393, 1461864544896, 6262021627055, 26894816382199, 115792035533779, 499648608539714, 2160504474956390
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2011

Keywords

Comments

Trinomial coefficients satisfy: Sum_{k=0..2*n} A027907(n,k)*x^k = (1+x+x^2)^n.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 69*x^5 + 248*x^6 + 923*x^7 +...
such that A(x) = G(x*A(x)) where G(x) is given by:
G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2 = (1-x^5)/(1-x) + x^3/(1-x)^2:
G(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 +...
...
Let A = x*A(x), then the logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + A + A^2)*x +
(1 + 2^2*A + 3^2*A^2 + 2^2*A^3 + A^4)*x^2/2 +
(1 + 3^2*A + 6^2*A^2 + 7^2*A^3 + 6^2*A^4 + 3^2*A^5 + A^6)*x^3/3 +
(1 + 4^2*A + 10^2*A^2 + 16^2*A^3 + 19^2*A^4 + 16^2*A^5 + 10^2*A^6 + 4^2*A^7 + A^8)*x^4/4 +
(1 + 5^2*A + 15^2*A^2 + 30^2*A^3 + 45^2*A^4 + 51^2*A^5 + 45^2*A^6 + 30^2*A^7 + 15^2*A^8 + 5^2*A^9 + A^10)*x^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); A=1/x*serreverse(x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12+x*O(x^n))); polcoeff(A, n)}
    
  • PARI
    /* G.f. A(x) using the squares of the trinomial coefficients */
    {A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*A^k) *x^m/m)+x*O(x^n)));polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2.
G.f.: A(x) = (1/x)*Series_Reversion( x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12) ).

A027915 a(n) = Sum_{0<=j<=i, 0<=i<=n} A027907(i, j).

Original entry on oeis.org

1, 3, 9, 26, 76, 223, 658, 1948, 5782, 17193, 51194, 152594, 455209, 1358841, 4058439, 12126696, 36248370, 108385917, 324172566, 969801726, 2901883611, 8684735577, 25995833145, 77824036620, 233012973051, 697745695923
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A027914.

Formula

G.f.: (1+x+1/G(0))/(2*(1-2*x-3*x^2))/(1-x), where G(k)= 1 + x*(2+3*x)*(4*k+1)/(4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013

A099604 Antidiagonal sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 23, 40, 72, 131, 233, 420, 756, 1355, 2438, 4381, 7868, 14144, 25413, 45661, 82058, 147444, 264943, 476092, 855483, 1537236, 2762296, 4963591, 8919173, 16027012, 28799164, 51749715, 92989886, 167094985, 300255720
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 3, 0, -2, -1}, {1, 1, 2, 4, 7, 12}, 35] (* Jean-François Alcover, Oct 30 2017 *)
  • PARI
    a(n)=polcoeff((1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6)+x*O(x^n),n,x)

Formula

G.f.: (1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6).
a(n) = 2*a(n-2) + 3*a(n-3) - 2*a(n-5) - a(n-6) for n>=6.
Previous Showing 11-20 of 162 results. Next