cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A053298 Partial sums of A027964.

Original entry on oeis.org

1, 8, 34, 107, 281, 654, 1397, 2801, 5353, 9859, 17643, 30869, 53062, 89951, 150833, 250780, 414210, 680665, 1114160, 1818310, 2960806, 4813018, 7814074, 12674542, 20544191, 33283434, 53902532, 87272241, 141273663, 228658744
Offset: 0

Views

Author

Barry E. Williams, Mar 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

Crossrefs

Cf. A027964 and A000204.
A column in triangular array A027960.
Cf. A137176 (row k=5).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x)/((1-x-x^2)*(1-x)^5))); // G. C. Greubel, May 24 2018
  • Mathematica
    LinearRecurrence[{6,-14,15,-5,-4,4,-1},{1,8,34,107,281,654,1397},30] (* Harvey P. Dale, May 09 2018 *)
    CoefficientList[Series[(1+2x)/((1-x-x^2)(1-x)^5), {x,0,50}], x] (* G. C. Greubel, May 24 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+2*x)/((1-x-x^2)*(1-x)^5)) \\ G. C. Greubel, May 24 2018
    

Formula

a(n) = 3*F(n+10) + F(n+9) - (3*n^4 + 58*n^3 + 489*n^2 + 2234*n + 4752)/24, where F(.) are the Fibonacci numbers (A000045).
a(n) = a(n-1) + a(n-2) + (3*n+4)*C(n+3, 3)/4.
G.f.: (1 + 2*x)/((1 - x - x^2)*(1 - x)^5). - R. J. Mathar, Nov 28 2008

A360278 Determinant of the matrix [L(j+k) + d(j,k)]_{1<=j, k<=n}, where L(n) denotes the Lucas number A000032(n), and d(j,k) is 1 or 0 according as j = k or not.

Original entry on oeis.org

4, 16, 44, 121, 319, 841, 2204, 5776, 15124, 39601, 103679, 271441, 710644, 1860496, 4870844, 12752041, 33385279, 87403801, 228826124, 599074576, 1568397604, 4106118241, 10749957119, 28143753121, 73681302244, 192900153616, 505019158604, 1322157322201, 3461452807999, 9062201101801, 23725150497404, 62113250390416, 162614600673844, 425730551631121, 1114577054219519
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 01 2023

Keywords

Comments

Conjecture 1: Let v(0) = 2, v(1) = A, and v(n+1) = A*v(n) + v(n-1) for n > 0. Then A^2*det[v(j+k) + d(j,k)]_{1<=j, k<=n} = v(n+1)^2 - (A^2 + 4)*(n mod 2) for any positive integer n. In particular, a(n) = L(n+1)^2 - 5*(n mod 2) for all n > 0.
Conjecture 2: Let v(0) = 2, v(1) = A, and v(n+1) = A*v(n) - v(n-1) for n > 0. Then det[v(j+k) + d(j,k)]_{1<=j, k<=n} = u(n+1)^2 - n^2 for any positive integer n, where u(0) = 0, u(1) = 1, and u(n+1) = A*u(n) - u(n-1) for all n > 0.
Conjecture 3: Let F(n) denote the Fibonacci number A000045(n). Then, for any positive integer n, we have det[F(j+k) + d(j,k)]_{1<=j, k<=n} = F(n+1)^2 + (n mod 2).

Examples

			a(2) = 16 since the determinant of the 2 X 2 matrix [L(1+1)+1, L(1+2); L(2+1), L(2+2)+1] = [4, 4; 4, 8] is 16.
		

Crossrefs

Programs

  • Magma
    A360278:= func< n | Lucas(n+1)^2 - 5*(n mod 2) >;
    [A360278(n): n in [1..40]]; // G. C. Greubel, Jun 10 2025
    
  • Mathematica
    (* First program *)
    a[n_]:=a[n]=Det[Table[LucasL[j+k]+Boole[j==k],{j,1,n},{k,1,n}]];
    Table[a[n],{n,1,25}]
    (* Second program *)
    LinearRecurrence[{3, 0, -3, 1}, {4, 16, 44, 121}, 41] (* G. C. Greubel, Jun 10 2025 *)
  • SageMath
    def A360278(n): return lucas_number2(n+1,1,-1)^2 - 5*(n%2)
    print([A360278(n) for n in range(1,41)]) # G. C. Greubel, Jun 10 2025

Formula

From G. C. Greubel, Jun 10 2025: (Start)
a(n) = A000032(2*n+2) - 2 - (n mod 2) = A000032(n+1)^2 - 5*(n mod 2).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
a(n) = 1 + Sum_{k=0..n-1} A027960(n, k)*A027960(n, k+1).
G.f.: (1 + x + 4*x^2 - x^3)/((1-x^2)*(1-3*x+x^2)) - 1.
E.g.f.: exp(3*x/2)*( 3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2) ) - 2*cosh(x) - 3*sinh(x) - 1. (End)

A026999 Uniquification of A026998.

Original entry on oeis.org

1, 4, 8, 11, 13, 19, 26, 29, 34, 43, 53, 54, 64, 73, 76, 89, 101, 103, 118, 134, 151, 169, 171, 174, 188, 196, 199, 208, 229, 251, 274, 281, 298, 323, 349, 370, 376, 404, 431, 433, 463, 487, 494, 518, 521, 526, 559, 593, 628, 634, 664, 701, 739, 743, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1148
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] -f[n,k]*Boole[k>n];
    A026999= Table[A027960[n,2*k], {n,0,225}, {k,0,n}]//Flatten//Union;
    Table[A026999[[n]], {n,120}] (* G. C. Greubel, Aug 21 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n, k): return t(n, 2*k)
    A026999 = sorted(set( flatten([[A026998(n,k) for k in range(n+1)] for n in range(103)]) ))
    print([A026999[n] for n in range(100)]) # G. C. Greubel, Aug 21 2025

Extensions

More terms added by G. C. Greubel, Aug 21 2025

A027008 a(n) = greatest number in row n of array T given by A026998.

Original entry on oeis.org

1, 1, 4, 8, 13, 26, 54, 101, 174, 370, 743, 1397, 2552, 5353, 10636, 20120, 38138, 78753, 155793, 296248, 573382, 1173183, 2316317, 4423690, 8673078, 17641499, 34801731, 66705394, 131894869, 267203186, 526966454, 1013155981
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026998.

Programs

  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] -f[n,k]*Boole[k>n];
    b[n_]:= b[n]= Table[A027960[n,2*k], {k,0,n}];
    A027008[n_]:= Max[b[n]];
    Table[A027008[n], {n,0,50}] (* G. C. Greubel, Jul 24 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n, k): return t(n, 2*k)
    def b(n): return flatten([A026998(n,k) for k in range(n+1)])
    def A027008(n): return max(b(n))
    print([A027008(n) for n in range(51)]) # G. C. Greubel, Jul 24 2025

Extensions

Offset changed by G. C. Greubel, Jul 24 2025
Previous Showing 31-34 of 34 results.