A028272
Elements to right of central elements in 3-Pascal triangle A028262 that are not 1.
Original entry on oeis.org
4, 5, 13, 6, 19, 7, 45, 26, 8, 71, 34, 9, 161, 105, 43, 10, 266, 148, 53, 11, 588, 414, 201, 64, 12, 1002, 615, 265, 76, 13, 2178, 1617, 880, 341, 89, 14, 3795, 2497, 1221, 430, 103, 15, 8151, 6292, 3718, 1651, 533, 118, 16, 14443, 10010, 5369, 2184, 651, 134
Offset: 0
A028274
Odd elements (greater than 1) to right of central elements in 3-Pascal triangle A028262.
Original entry on oeis.org
5, 13, 19, 7, 45, 71, 9, 161, 105, 43, 53, 11, 201, 615, 265, 13, 1617, 341, 89, 3795, 2497, 1221, 103, 15, 8151, 1651, 533, 14443, 5369, 651, 17, 30745, 24453, 15379, 7553, 2835, 785, 151, 169, 19, 1105, 5661, 1293, 21, 24225, 1501, 229, 90117, 31179
Offset: 1
A028275
Elements in 4-Pascal triangle (by row).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 16, 16, 7, 1, 1, 8, 23, 32, 23, 8, 1, 1, 9, 31, 55, 55, 31, 9, 1, 1, 10, 40, 86, 110, 86, 40, 10, 1, 1, 11, 50, 126, 196, 196, 126, 50, 11, 1, 1, 12, 61, 176, 322, 392, 322, 176, 61, 12, 1, 1, 13, 73, 237, 498, 714, 714, 498, 237
Offset: 0
1; 1 1; 1 4 1; 1 5 5 1; 1 6 10 6 1; ...
More terms from Ben Baugher (s1191623(AT)cedarville.edu)
A146986
Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 2^(n-1) * binomial(n-2, k-1) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 12, 22, 12, 1, 1, 21, 58, 58, 21, 1, 1, 38, 143, 212, 143, 38, 1, 1, 71, 341, 675, 675, 341, 71, 1, 1, 136, 796, 1976, 2630, 1976, 796, 136, 1, 1, 265, 1828, 5460, 9086, 9086, 5460, 1828, 265, 1, 1, 522, 4141, 14456, 28882, 36092, 28882, 14456, 4141, 522, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 7, 7, 1;
1, 12, 22, 12, 1;
1, 21, 58, 58, 21, 1;
1, 38, 143, 212, 143, 38, 1;
-
T:= function(n,k,q)
if n<2 then return Binomial(n,k);
else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k,2) ))); # G. C. Greubel, Jan 09 2020
-
T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >;
[T(n,k,2): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
q:=2; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Table[If[n<2, Binomial[n, m], Binomial[n, m] + 2^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
-
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 2^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
@CachedFunction
def T(n, k, q):
if (n<2): return binomial(n,k)
else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1)
[[T(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
A146987
Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 3^(n-1)*binomial(n-2, k -1) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 31, 60, 31, 1, 1, 86, 253, 253, 86, 1, 1, 249, 987, 1478, 987, 249, 1, 1, 736, 3666, 7325, 7325, 3666, 736, 1, 1, 2195, 13150, 32861, 43810, 32861, 13150, 2195, 1, 1, 6570, 45963, 137865, 229761, 229761, 137865, 45963, 6570, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 12, 12, 1;
1, 31, 60, 31, 1;
1, 86, 253, 253, 86, 1;
1, 249, 987, 1478, 987, 249, 1;
-
T:= function(n,k,q)
if n<2 then return Binomial(n,k);
else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1);
fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k,3) ))); # G. C. Greubel, Jan 09 2020
-
T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >;
[T(n,k,3): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
q:=3; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Table[If[n<2, Binomial[n, m], Binomial[n, m] + 3^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
-
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 3^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
@CachedFunction
def T(n, k, q):
if (n<2): return binomial(n,k)
else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1)
[[T(n, k, 3) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
A146988
Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 4^(n-1) * binomial(n-2, k-1) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 68, 134, 68, 1, 1, 261, 778, 778, 261, 1, 1, 1030, 4111, 6164, 4111, 1030, 1, 1, 4103, 20501, 40995, 40995, 20501, 4103, 1, 1, 16392, 98332, 245816, 327750, 245816, 98332, 16392, 1, 1, 65545, 458788, 1376340, 2293886, 2293886, 1376340, 458788, 65545, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 19, 19, 1;
1, 68, 134, 68, 1;
1, 261, 778, 778, 261, 1;
1, 1030, 4111, 6164, 4111, 1030, 1;
-
T:= function(n,k,q)
if n<2 then return Binomial(n,k);
else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k,4) ))); # G. C. Greubel, Jan 09 2020
-
T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >;
[T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
q:=4; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Table[If[n<2, Binomial[n, m], Binomial[n, m] + 4^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
-
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 4^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
@CachedFunction
def T(n, k, q):
if (n<2): return binomial(n,k)
else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1)
[[T(n, k, 4) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
A146990
Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + n^(n-1) * binomial(n-2, k-1) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 68, 134, 68, 1, 1, 630, 1885, 1885, 630, 1, 1, 7782, 31119, 46676, 31119, 7782, 1, 1, 117656, 588266, 1176525, 1176525, 588266, 117656, 1, 1, 2097160, 12582940, 31457336, 41943110, 31457336, 12582940, 2097160, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 68, 134, 68, 1;
1, 630, 1885, 1885, 630, 1;
1, 7782, 31119, 46676, 31119, 7782, 1;
-
T:= function(n,k)
if n<2 then return Binomial(n,k);
else return Binomial(n,k) + n^(n-1)*Binomial(n-2,k-1);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jan 09 2020
-
T:= func< n,k | n lt 2 select Binomial(n,k) else Binomial(n,k) + n^(n-1)*Binomial(n-2,k-1) >;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + n^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Table[If[n <2, Binomial[n, m], Binomial[n, m] + n^(n - 1)*Binomial[n - 2, m - 1]], {n, 0, 10}, {m, 0, n}]; Flatten[%]
-
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + n^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
@CachedFunction
def T(n, k):
if (n<2): return binomial(n,k)
else: return binomial(n,k) + n^(n-1)*binomial(n-2,k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
Original entry on oeis.org
2, 2, 4, 3, 3, 13, 4, 13, 13, 4, 17, 45, 17, 5, 5, 74, 133, 161, 133, 74, 6, 32, 207, 294, 294, 207, 32, 6, 38, 501, 588, 501, 38, 7, 440, 1089, 1089, 440, 7, 215, 2178, 215, 8, 59, 1859, 3146, 3146, 1859, 59, 8, 67, 1092, 5005, 8151, 5005, 1092, 67, 9, 9, 468
Offset: 0
Original entry on oeis.org
2, 3, 13, 4, 17, 5, 133, 74, 294, 207, 32, 6, 501, 38, 1089, 440, 7, 215, 3146, 1859, 59, 8, 5005, 1092, 67, 9, 27599, 19916, 11466, 5194, 1810, 468, 58344, 47515, 31382, 16660, 7004, 2278, 94, 10, 105859, 78897, 48042, 23664, 9282, 104, 222547, 184756
Offset: 0
A147644
Triangle read by rows: t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1], 0]; Mod[If[n > 2, 2*Binomial[n - 2, m - 1], 0],2]=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 16, 16, 7, 1, 1, 8, 23, 32, 23, 8, 1, 1, 9, 31, 55, 55, 31, 9, 1, 1, 10, 40, 86, 110, 86, 40, 10, 1, 1, 11, 50, 126, 196, 196, 126, 50, 11, 1, 1, 12, 61, 176, 322, 392, 322, 176, 61, 12
Offset: 0
{1}, {1, 1}, {1, 2, 1}, {1, 5, 5, 1}, {1, 6, 10, 6, 1}, {1, 7, 16, 16, 7, 1}, {1, 8, 23, 32, 23, 8, 1}, {1, 9, 31, 55, 55, 31, 9, 1}, {1, 10, 40, 86, 110, 86, 40, 10, 1}, {1, 11, 50, 126, 196, 196, 126, 50, 11, 1}, {1, 12, 61, 176, 322, 392, 322, 176, 61, 12, 1}
-
Table[Table[Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1], 0], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Comments