A319105
Expansion of e.g.f. Product_{k>=0} 1/(1 - x^(2^k))^(1/2^k).
Original entry on oeis.org
1, 1, 3, 9, 51, 255, 1845, 12915, 129465, 1165185, 13338675, 146725425, 2023126875, 26300649375, 405966485925, 6089497288875, 110674075136625, 1881459277322625, 36921598987147875, 701510380755809625, 15370603498046671875, 322782673458980109375, 7608990209632029343125, 175006774821536674891875
Offset: 0
-
nmax = 23; CoefficientList[Series[Product[1/(1 - x^2^k)^(1/2^k), {k, 0, Ceiling[Log[2, nmax]]}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[Sum[(IntegerExponent[k, 2] + 1) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (n - 1)! Sum[(IntegerExponent[k, 2] + 1) a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A322513
Expansion of e.g.f. log(1 + Sum_{k>=1} d(k) * x^k / k!), where d(k) = number of divisors of k (A000005).
Original entry on oeis.org
0, 1, 1, -2, 1, 11, -48, -6, 1241, -6431, -15320, 452970, -2317212, -17584137, 372119776, -1552313624, -31732274313, 565880016193, -1217992446564, -90197542736656, 1400682677566587, 1990004001731140, -384348195167184028, 5109122826021406702
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 0, (b-> b(n)-add(a(j)
*binomial(n, j)*j*b(n-j), j=1..n-1)/n)(numtheory[tau]))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 06 2019
-
nmax = 23; CoefficientList[Series[Log[1 + Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = DivisorSigma[0, n] - Sum[Binomial[n, k] DivisorSigma[0, n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]
A327927
Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j=1..i} x^(i*j) / (i*j)).
Original entry on oeis.org
1, 1, 2, 6, 30, 150, 1020, 7140, 63420, 611100, 6625080, 72875880, 977213160, 12876743880, 190951160400, 2975661889200, 51767677962000, 886225654314000, 17136230971860000, 329530590793404000, 7035395004749311200, 151961029211943151200
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[Sum[Ceiling[DivisorSigma[0, k]/2] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Ceiling[DivisorSigma[0, k]/2] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
nmax = 20; CoefficientList[Series[Exp[Sum[-(x^(k*(1 + k))*LerchPhi[x^k, 1, 1 + k] + Log[1 - x^k])/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 06 2019 *)
A327940
Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j=1..i-1} x^(i*j) / (i*j)).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 385, 1854, 23233, 153656, 2151441, 18787130, 338487721, 3165541092, 60609811249, 835202858294, 14913805143105, 228441779869424, 5319673396479073, 81040768940877426, 2153026504862728201, 39759334398324543260, 988919906784578473761
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[Sum[Floor[DivisorSigma[0, k]/2] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Floor[DivisorSigma[0, k]/2] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
A345749
E.g.f.: Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^(1/k).
Original entry on oeis.org
1, 1, 4, 21, 147, 1250, 12633, 147497, 1947676, 28699373, 466994003, 8309274754, 160368858609, 3336869582657, 74468098634660, 1773827462044421, 44905503103938915, 1203843692164105458, 34070243272290551113, 1015056385225183643721
Offset: 0
-
max = 19; Range[0, max]! * CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(exp(x)-1)^k)^(1/k))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N,numdiv(k)*(exp(x)-1)^k/k))))
A296048
Expansion of e.g.f. Product_{k>=1} ((1 - x^k)/(1 + x^k))^(1/k).
Original entry on oeis.org
1, -2, 2, -4, 32, -128, 496, -2336, 29312, -395776, 3194624, -21951488, 277270528, -4027191296, 38850203648, -739834458112, 19460560584704, -299971773661184, 3169121209090048, -51853341314514944, 1234704403684130816, -30653318499154788352, 658369600764729884672, -10809496145754051313664
Offset: 0
-
a:=series(mul(((1-x^k)/(1+x^k))^(1/k),k=1..100),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[-2 Sum[Total[Mod[Divisors[k], 2] x^k]/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A305128
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^AH(k), where AH(k) is the k-th alternating harmonic number.
Original entry on oeis.org
1, 1, 3, 14, 79, 539, 4663, 42468, 457945, 5433281, 71036231, 994289658, 15544425103, 253283689619, 4489180389835, 84521336758904, 1687130833152561, 35365641206048129, 790065486354237643, 18340253632236738022, 449655289227002010351, 11492300073384698090795, 306803167368168113022271
Offset: 0
-
nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^Sum[(-1)^(j + 1)/j, {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d ((-1)^(d + 1) LerchPhi[-1, 1, d + 1] + Log[2]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
A327941
Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j>=2} x^(i*j) / (i*j)).
Original entry on oeis.org
1, 0, 1, 2, 15, 44, 595, 2274, 36673, 247400, 3660921, 29194010, 632617711, 5289743172, 117393123835, 1525153361354, 32315717350785, 433901475732944, 11698737221494513, 168831340268759730, 4894554062081828431, 87212857278031619420, 2398463635663863045411
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[Sum[(DivisorSigma[0, k] - 1) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[(DivisorSigma[0, k] - 1) a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
A353186
Expansion of e.g.f. 1/(1 - Sum_{k>=1} d(k) * x^k / k), where d(n) = number of divisors of n (A000005).
Original entry on oeis.org
1, 1, 4, 22, 170, 1588, 18236, 240840, 3662424, 62456136, 1185150768, 24714979584, 562659843984, 13870798275072, 368324715871680, 10478253239415552, 317975367247809408, 10252138622419702656, 349999438215928660992, 12612365665457524786944, 478414908509124826439424
Offset: 0
-
d[k_] := d[k] = DivisorSigma[0, k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * d[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Apr 30 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*numdiv(j)*binomial(i, j)*v[i-j+1])); v;
Comments