A132773
a(n) = n*(n + 31).
Original entry on oeis.org
0, 32, 66, 102, 140, 180, 222, 266, 312, 360, 410, 462, 516, 572, 630, 690, 752, 816, 882, 950, 1020, 1092, 1166, 1242, 1320, 1400, 1482, 1566, 1652, 1740, 1830, 1922, 2016, 2112, 2210, 2310, 2412, 2516, 2622, 2730, 2840, 2952, 3066, 3182, 3300, 3420, 3542, 3666
Offset: 0
A214870
Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places counterclockwise. T(n,k) read by antidiagonals.
Original entry on oeis.org
1, 2, 3, 5, 4, 7, 10, 9, 8, 13, 17, 16, 6, 14, 21, 26, 25, 11, 12, 22, 31, 37, 36, 18, 15, 20, 32, 43, 50, 49, 27, 24, 23, 30, 44, 57, 65, 64, 38, 35, 19, 33, 42, 58, 73, 82, 81, 51, 48, 28, 29, 45, 56, 74, 91, 101, 100, 66, 63, 39, 34, 41, 59, 72, 92, 111
Offset: 1
The start of the sequence as table:
1 2 5 10 17 26 ...
3 4 9 16 25 36 ...
7 8 6 11 18 27 ...
13 14 12 15 24 35 ...
21 22 20 23 19 28 ...
31 32 30 33 29 34 ...
...
The start of the sequence as triangle array read by rows:
1;
2, 3;
5, 4, 7;
10, 9, 8, 13;
17, 16, 6, 14, 21;
26, 25, 11, 12, 22, 31;
...
Cf.
A060734,
A060736,
A185725,
A213921,
A213922; table T(n,k) contains: in rows
A002522,
A000290,
A059100,
A005563,
A117950,
A008865,
A087475,
A028872,
A117951,
A028347,
A114949,
A028875,
A117619,
A028878,
A189833,
A028881,
A189834,
A028884,
A114948,
A028560,
A189836; in columns
A002061,
A014206,
A002378,
A027688,
A028387,
A027689,
A028552,
A027690,
A014209,
A027691,
A027692,
A082111,
A027693,
A028557,
A027694,
A108195,
A187710,
A048058,
A048840.
A277108
a(n) = 4*n*(n+5).
Original entry on oeis.org
24, 56, 96, 144, 200, 264, 336, 416, 504, 600, 704, 816, 936, 1064, 1200, 1344, 1496, 1656, 1824, 2000, 2184, 2376, 2576, 2784, 3000, 3224, 3456, 3696, 3944, 4200, 4464, 4736, 5016, 5304, 5600, 5904, 6216, 6536, 6864, 7200, 7544, 7896, 8256, 8624, 9000, 9384, 9776
Offset: 1
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- Eric Weisstein's World of Mathematics, Helm Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50],n->4*n*(n+5)); # Muniru A Asiru, Jun 01 2018
-
seq(4*n^2+20*n, n = 1 .. 40);
-
Table[4 n (n + 5), {n, 40}] (* or *)
Rest@ CoefficientList[Series[8 x (3 - 2 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, Nov 06 2016 *)
-
a(n)=4*n*(n+5) \\ Charles R Greathouse IV, Jun 17 2017
A343125
Triangle T(k, n) = (n+3)*(k-n) - 4, k >= 2, 1 <= n <= k-1, read by rows.
Original entry on oeis.org
0, 4, 1, 8, 6, 2, 12, 11, 8, 3, 16, 16, 14, 10, 4, 20, 21, 20, 17, 12, 5, 24, 26, 26, 24, 20, 14, 6, 28, 31, 32, 31, 28, 23, 16, 7, 32, 36, 38, 38, 36, 32, 26, 18, 8, 36, 41, 44, 45, 44, 41, 36, 29, 20, 9, 40, 46, 50, 52, 52, 50, 46, 40, 32, 22, 10
Offset: 2
Triangle T(k, n) begins:
k \ n| 1 2 3 4 5 6 7 8 9 10 11
------+----------------------------------
2 | 0
3 | 4 1
4 | 8 6 2
5 | 12 11 8 3
6 | 16 16 14 10 4
7 | 20 21 20 17 12 5
8 | 24 26 26 24 20 14 6
9 | 28 31 32 31 28 23 16 7
10 | 32 36 38 38 36 32 26 18 8
11 | 36 41 44 45 44 41 36 29 20 9
12 | 40 46 50 52 52 50 46 40 32 22 10
.
The following are the closed formulas for k = 3, 4 for A(k, n) = Sum_{m=0..n} F(k, m)^2, with F(k, n) = A092921(k, n), the k-generalized Fibonacci numbers, and A(k, n) = A343138(k, n), the sum of squares of F(k, n). These formulas are derived from the closed formula in the formula section. Of course further simplifications are possible. For k = 2, T(2, 1) = 0 so illustrations start with k = 3.
k | Formula
--+--------------------------------------------------------
3 | Sum_{m=0..n} F(3,m)^2 = (1/4)*(2*F(3,n)*F(3,n+2) + 4*F(3,n+1)*F(3,n+2) - (k - 2)*F(3,n)^2 - T(3,1)*F(3,n+1)^2 - T(3,2)*F(3,n+2)^2 + 1).
4 | Sum_{m=0..n} F(3,m)^2 = (1/6)*(-2*F(4,n)*F(4,n+1) + 2*F(4,n)*F(4,n+3) + 4*F(4,n+1)*F(4,n+3) + 6*F(4,n+2)*F(4,n+3) - (k-2)*F(4,n)^2 - T(4,1)*F(4,n+1)^2 - T(4, 2)*F(4,n+2)^2 - T(4,3)*F(4,n+3)^2 + 2).
- Raphael Schumacher, How to Sum the Squares of the Tetranacci Numbers and the Fibonacci m-step Numbers, Fibonacci Quarterly, 57, (2019), 168-175.
- Raphael Schumacher, Explicit Formulas for Sums Involving the Squares of the First n Tribonacci Numbers, Fibonacci Quarterly, 58 (2020), 194-202.
-
T := (k, n) -> (n + 3)*(k - n) - 4:
seq(print(seq(T(k, n), n=1..k-1)), k = 2..12); # Peter Luschny, Apr 02 2021
-
Table[(n + 3) (k - n) - 4, {k, 2, 12}, {n, k - 1}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
-
T(k,n)=(n + 3)*(k - n) - 4
for(k = 2,12,for(n = 1,k - 1, print1(T(k,n),", ")))
-
flatten([[(n+3)*(k-n) -4 for n in (1..k-1)] for k in (2..15)]) # G. C. Greubel, Nov 22 2021
Comments