cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A293620 Numbers k such that f(k), f(k+1) and f(k+2) are all primes, where f(k) = (2k+1)^2 - 2 (A073577).

Original entry on oeis.org

1, 2, 16, 58, 149, 177, 534, 681, 954, 1045, 1052, 1255, 1367, 1563, 2046, 2074, 2515, 2557, 2564, 2788, 3586, 3593, 3908, 4062, 4552, 5252, 5371, 5385, 6400, 6729, 7443, 7478, 9305, 9375, 9942, 10355, 10411, 10726, 10740, 11286, 11545, 11559, 11832, 11965
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

Sierpiński proved that under Schinzel's hypothesis H this sequence is infinite.
Sierpiński showed that the only quadruple of consecutive primes of the form (2k+1)^2 - 2 are for k = 1 (i.e., 1 and 2 are the only consecutive terms in this sequence).
Numbers k such that the 3 consecutive integers k, k+1 and k+2 belong to A088572. - Michel Marcus, Oct 13 2017

Examples

			The first triples are: k = 1: (7, 23, 47), k = 2: (23, 47, 79), k = 16: (1087, 1223, 1367).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], AllTrue[{(2#+1)^2-2, (2#+3)^2-2, (2#+5)^2-2},PrimeQ] &]
    SequencePosition[Table[If[PrimeQ[(2k+1)^2-2],1,0],{k,12000}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 09 2025 *)
  • PARI
    f(n) = 4*n^2 + 4*n - 1;
    isok(n) = isprime(f(n)) && isprime(f(n+1)) && isprime(f(n+2)); \\ Michel Marcus, Oct 13 2017

A309726 Numbers k such that k^2 - 12 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 25, 29, 35, 41, 49, 53, 59, 61, 79, 85, 91, 95, 97, 103, 107, 113, 119, 121, 137, 139, 145, 149, 163, 169, 173, 179, 181, 185, 191, 205, 209, 227, 233, 235, 245, 251
Offset: 1

Views

Author

Daniel Starodubtsev, Aug 14 2019

Keywords

Comments

All terms are odd and not divisible by 3.

Examples

			11 is in the sequence because 11^2 - 12 = 109, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5,301,2],PrimeQ[#^2-12]&] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    select(n->isprime(n^2-12), [1..1000]) \\ Andrew Howroyd, Aug 14 2019

Formula

If A056927(k) = 12, then k is a term. - A.H.M. Smeets, Aug 15 2019

A328525 Numbers k such that (k-1)*k*(k+1) = (k-1)*(1+u) = k*(1+v) = (k+1)*(1+w) with primes u, v, w.

Original entry on oeis.org

3, 5, 9, 21, 55, 131, 145, 155, 231, 259, 265, 449, 495, 561, 595, 1045, 1051, 1365, 1409, 1491, 1549, 1849, 1989, 2001, 2101, 2469, 2785, 3365, 3621, 3641, 3669, 3845, 3911, 4285, 4951, 5181, 5465, 6049, 6699, 7189, 7229, 8219, 8629, 9175, 9521, 9539, 9631, 9729
Offset: 1

Views

Author

Frank Ellermann, Feb 24 2020

Keywords

Examples

			3 is a term because 2*3*4 = 2*(1+11) = 3*(1+7) = 4*(1+5) with primes 11, 7, 5.
9 is a term because 8*9*10 = 8*(1+89) = 9*(1+79) = 10*(1+71) with primes 89, 79, 71.
		

Crossrefs

Cf. A000040.
Intersection of A002328, A028870 and A045546.

Programs

  • Maple
    q:= k-> andmap(isprime, (t-> [t-1, t-k, t+k])(k^2-1)):
    select(q, [$1..10000])[];  # Alois P. Heinz, Feb 25 2020
  • Mathematica
    Select[Range[2, 10^4], AllTrue[{(# - 1)*#, #*(# + 1), (# + 1)*(# - 1)} - 1, PrimeQ] &] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    isok(k) = isprime(k*(k+1)-1) && isprime((k+1)*(k-1)-1) && isprime(k*(k-1)-1); \\ Michel Marcus, Feb 25 2020
  • Rexx
    S = 3
    do N = 5 to 595 by 2
       if NOPRIME( N*N +N -1 ) then  iterate N
       if NOPRIME( N*N    -2 ) then  iterate N
       if NOPRIME( N*N -N -1 ) then  iterate N
       S = S || ',' N
    end N
    say S
    

Extensions

More terms from Amiram Eldar, Feb 24 2020

A330438 Numbers k such that k^2-2 and k^3-2 are prime.

Original entry on oeis.org

9, 15, 19, 27, 37, 121, 135, 145, 211, 217, 259, 265, 267, 279, 355, 357, 387, 391, 435, 489, 525, 561, 615, 621, 727, 951, 987, 1029, 1119, 1141, 1177, 1251, 1287, 1357, 1435, 1491, 1561, 1617, 1717, 1785, 1819, 1839, 1875, 1909, 1989, 2001, 2077, 2107, 2211
Offset: 1

Views

Author

K. D. Bajpai, Dec 14 2019

Keywords

Comments

Intersection of A028870 and A038599.

Examples

			a(1) = 9: 9^2 - 2 = 79; 9^3 - 2 = 727; both results are prime.
a(2) = 15: 15^2 - 2 = 223; 15^3 - 2 = 3373; both results are prime.
		

Crossrefs

Programs

  • Magma
    [n : n in [1 .. 100] | IsPrime (n^2 - 2) and IsPrime (n^3 - 2)];
  • Maple
    filter:= k -> isprime(k^2-2) and isprime(k^3-2):
    select(filter, [$2..10000]); # Robert Israel, Dec 24 2019
  • Mathematica
    Select[Range[10000], PrimeQ[#^3 - 2] && PrimeQ[#^2 - 2] &]

A239475 Least number k such that k^n + n and k^n - n are both prime, or 0 if no such number exists.

Original entry on oeis.org

4, 3, 2, 0, 42, 175, 66, 3, 2, 4983, 1770, 55055, 28686, 18765, 8456, 0, 594, 128345, 136080, 81, 92, 1163409, 18810, 10415, 11754, 3855, 0, 86043, 38880, 17639, 26088, 37293, 5540, 612015, 6876, 0, 44220, 130425, 110, 9292527, 1004850, 1812149, 442404, 1007445, 570658
Offset: 1

Views

Author

Derek Orr, Mar 20 2014

Keywords

Comments

a(n) = 0 iff n is of the form (pk)^p for some k and some prime p (See A097764).
gcd(n,a(n)) = 1 for all a(n) > 0.

Examples

			1^1 +/- 1 = 2 and 0 are not both primes. 2^1 +/- 1 = 3 and 1 are not both primes. 3^1 +/- 1 = 4 and 2 are not both primes. 4^1 +/- 1 = 5 and 3 are both primes. Thus a(1) = 4.
		

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,10^7,if(ispseudoprime(k^n-n)&&ispseudoprime(k^n+n),return(k)))
    n=1;while(n<100,print1(a(n),", ");n++)
  • Python
    import sympy
    from sympy import isprime
    def TwoBoth(x):
      for k in range(1,10**7):
        if isprime(k**x+x) and isprime(k**x-x):
          return k
    x = 1
    while x < 100:
      if TwoBoth(x) != None:
        print(TwoBoth(x))
      else:
        print(0)
      x += 1
    

Formula

a(A097764(n)) = 0 for all n.

A334294 Numbers k such that 70*k^2 + 70*k - 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 74, 76, 77, 78, 79, 80, 81, 82, 87, 88, 90, 93, 96, 97, 100
Offset: 1

Views

Author

James R. Buddenhagen, Apr 21 2020

Keywords

Comments

Among quadratic polynomials in k of the form a*k^2 + a*k - 1 the value a=70 gives the most primes for any a in the range 1<=a<=300, at least up to k=40000. Here a and k are positive integers. Other "good" values of a are a=250, a=99, and a=19.

Examples

			For k=1, 70*k^2 + 70*k - 1 = 70*1^2 + 70*1 - 1 = 139, which is prime, so 1 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(70*n^2+70*n-1) then n else NULL end if end proc;
    seq(a(n),n=1..100);
  • Mathematica
    Select[Range@ 100, PrimeQ[70 #^2 + 70 # - 1] &] (* Michael De Vlieger, May 26 2020 *)
Previous Showing 31-36 of 36 results.