cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A061298 Table by antidiagonals of rows of sequences where each row is binomial transform of preceding row and row 1 is (1,2,1,2,1,2,1,2,...).

Original entry on oeis.org

1, 1, 1, -2, 2, 1, 4, 1, 3, 1, -8, 2, 6, 4, 1, 16, 1, 12, 13, 5, 1, -32, 2, 24, 40, 22, 6, 1, 64, 1, 48, 121, 92, 33, 7, 1, -128, 2, 96, 364, 376, 174, 46, 8, 1, 256, 1, 192, 1093, 1520, 897, 292, 61, 9, 1, -512, 2, 384, 3280, 6112, 4566, 1816, 452, 78, 10, 1, 1024, 1, 768, 9841, 24512, 23073, 11152, 3289, 660, 97, 11, 1, -2048
Offset: 0

Views

Author

Henry Bottomley, Jun 05 2001

Keywords

Crossrefs

Rows include A011782 (but signed), A000034, A003945, A003462, A010036. Columns include A000012, A000027, A028872.

Formula

T(n, k) =(3n^k-(n-2)^k)/2. Coefficient of x^k in expansion of (1-(n-3)x)/((1-nx)(1-(n-2)x)).

A131919 A002024 + A131821 - A000012.

Original entry on oeis.org

1, 3, 3, 5, 3, 5, 7, 4, 4, 7, 9, 5, 5, 5, 9, 11, 6, 6, 6, 6, 11, 13, 7, 7, 7, 7, 7, 13, 15, 8, 8, 8, 8, 8, 8, 15, 17, 9, 9, 9, 9, 9, 9, 9, 17, 19, 10, 10, 10, 10, 10, 10, 10, 10, 19
Offset: 0

Views

Author

Gary W. Adamson, Jul 28 2007

Keywords

Comments

Row sums = A028872: (1, 6, 13, 22, 33, 46, ...).

Examples

			First few rows of the triangle:
   1;
   3, 3;
   5, 3, 5;
   7, 4, 4, 7;
   9, 5, 5, 5, 9;
  11, 6, 6, 6, 6, 11;
  13, 7, 7, 7, 7,  7, 13;
  ...
		

Crossrefs

Formula

A002024 + A131821 - A000012 as infinite lower triangular matrices.

A133475 Integers n such that n^3 + n^2 - 9*n + 16 is a square.

Original entry on oeis.org

-4, -3, -1, 0, 1, 3, 5, 11, 15, 28, 47, 55, 81, 549, 1799, 8361
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 29 2007

Keywords

Comments

The set of x values of integral points on the elliptic curve y^2 = x^3 + x^2 - 9*x + 16.

Examples

			0^3 + (-5)^2 + (-9) = 4^2, 1^3 + (-4)^2 + (-8) = 3^2, 3^3 + (-2)^2 + (-6) = 5^2
		

Crossrefs

Programs

  • Magma
    P := PolynomialRing(Integers()); {x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve(n^3 + n^2 - 9*n + 16)) ])};
    
  • Mathematica
    ok[x_] := Reduce[{y^2 == x^3 + x^2 - 9*x + 16, y >= 0}, y, Integers] =!= False; Select[Table[x, {x, -4, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
  • PARI
    is(n)=issquare(n^3+n^2-9*n+16) \\ Charles R Greathouse IV, Sep 06 2016
  • Sage
    EllipticCurve([0,1,0,-9,16]).integral_points()
    

Extensions

Edited by Max Alekseyev, Nov 13 2009

A375352 Numbers k such that 14*k + 2 is a square.

Original entry on oeis.org

1, 7, 23, 41, 73, 103, 151, 193, 257, 311, 391, 457, 553, 631, 743, 833, 961, 1063, 1207, 1321, 1481, 1607, 1783, 1921, 2113, 2263, 2471, 2633, 2857, 3031, 3271, 3457, 3713, 3911, 4183, 4393, 4681, 4903, 5207, 5441, 5761, 6007, 6343, 6601, 6953, 7223, 7591, 7873
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2024

Keywords

Comments

a(11) = 391 is first composite number in this sequence.

Crossrefs

Numbers k such that (m + (16-m)*k) is a square: A204221 (m = 1), this sequence (m = 2), A001082 (m = 4), A181433 (m = 5), A273367 (m = 6), A266956 (m = 7), A056220 (m = 8), A274978 (m = 9), A028872 (m = 12), A161532 (m = 14).

Programs

  • Magma
    [k: k in [0..8000] | IsSquare(14*k + 2)];
  • Mathematica
    ((Table[14*n + {4, 10}, {n, 0, 23}] // Flatten)^2 - 2)/14 (* Amiram Eldar, Aug 13 2024 *)

Formula

a(n) = (A113804(n)^2 - 2)/14. - Amiram Eldar, Aug 13 2024
a(n) = 2*A212965(n-1) - 1. - Hugo Pfoertner, Aug 13 2024
E.g.f.: ((2 + x + 7*x^2)*cosh(x) + (1 - x + 7*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Aug 13 2024
Previous Showing 31-34 of 34 results.