cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A076976 Product of the smallest prime divisors of composite numbers between successive primes.

Original entry on oeis.org

1, 2, 2, 12, 2, 12, 2, 12, 120, 2, 120, 12, 2, 12, 168, 120, 2, 120, 12, 2, 168, 12, 120, 1680, 12, 2, 12, 2, 12, 2217600, 12, 168, 2, 15840, 2, 120, 168, 12, 312, 120, 2, 15840, 2, 12, 2, 221760, 262080, 12, 2, 12, 120, 2, 18720, 264, 168, 120, 2, 120, 12, 2, 34272
Offset: 1

Views

Author

Amarnath Murthy, Oct 23 2002

Keywords

Comments

From Bernard Schott, Apr 09 2020: (Start)
a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)

Crossrefs

Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.

Programs

  • Maple
    p:= 2:
    for i from 1 to 100 do
      q:= p; p:= nextprime(p);
      A[i]:= mul(min(numtheory:-factorset(i)),i=q+1..p-1);
    od:
    seq(A[i],i=1..100); # Robert Israel, Mar 30 2020
  • Mathematica
    pspd[{p1_,p2_}]:=Times@@(FactorInteger[#][[1,1]]&/@Range[p1+1,p2-1]); pspd/@Partition[ Prime[Range[70]],2,1] (* Harvey P. Dale, Jan 12 2024 *)
  • PARI
    a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[,1]);); p;} \\ Michel Marcus, Mar 31 2020

Extensions

More terms from Sascha Kurz, Jan 22 2003

A320708 Indices of primes followed by a gap (distance to next larger prime) of 20.

Original entry on oeis.org

154, 259, 442, 480, 548, 753, 777, 783, 876, 971, 1035, 1066, 1095, 1106, 1147, 1254, 1277, 1302, 1337, 1345, 1355, 1381, 1396, 1400, 1423, 1438, 1562, 1592, 1613, 1662, 1669, 1808, 1955, 2016, 2043, 2081, 2116, 2129, 2147, 2226, 2302, 2307, 2387, 2517, 2547, 2563, 2694, 2724, 2745, 2755, 2766
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031938.

Crossrefs

Equals A000720 o A031938.
Row 10 of A174349.
Subsequence of A107730 (prime(n+1) ends in same digit as prime(n)).
Indices of 20's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..3000] | NthPrime(n+1) - NthPrime(n) eq 20]; // Vincenzo Librandi, Mar 22 2019
  • Mathematica
    Select[Range[3000], Prime[#] + 20 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 22 2019 *)
  • PARI
    A(N=100,g=20,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031938(n)).
A320708 = { i > 0 | prime(i+1) = prime(i) + 20 } = A001223^(-1)({20}).

A320704 Indices of primes followed by a gap (distance to next larger prime) of 12.

Original entry on oeis.org

46, 47, 91, 97, 114, 121, 139, 168, 197, 203, 214, 232, 239, 240, 242, 267, 278, 280, 290, 312, 317, 342, 357, 363, 376, 381, 404, 423, 437, 439, 449, 452, 461, 470, 472, 489, 499, 511, 546, 550, 562, 565, 599, 600, 617, 633, 634, 647, 653, 657, 675, 680, 692, 698, 716, 728
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031930.

Crossrefs

Equals A000720 o A031930.
Row 6 of A174349.
Indices of 12's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..1000] | NthPrime(n+1) - NthPrime(n) eq 12]; // Vincenzo Librandi, Mar 21 2019
  • Mathematica
    Select[Range[1000], Prime[#] + 12 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 21 2019 *)
  • PARI
    A320704_vec(N=100,g=12,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031930(n)).
A320704 = { i > 0 | prime(i+1) = prime(i) + 12 }.

A320705 Indices of primes followed by a gap (distance to next larger prime) of 14.

Original entry on oeis.org

30, 62, 66, 137, 146, 150, 162, 223, 250, 283, 309, 350, 360, 382, 402, 410, 424, 434, 503, 514, 526, 532, 536, 570, 610, 649, 654, 666, 687, 704, 706, 747, 780, 790, 867, 906, 919, 929, 967, 978, 981, 992, 1011, 1023, 1038, 1042, 1057, 1072, 1133, 1154, 1160, 1177, 1184
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031932.

Crossrefs

Equals A000720 o A031932.
Row 7 of A174349.
Indices of 14's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..1500] | NthPrime(n+1) - NthPrime(n) eq 14]; // Vincenzo Librandi, Mar 19 2019
  • Mathematica
    Select[Range[1500], Prime[#] + 14 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 19 2019 *)
    Position[Differences[Prime[Range[1200]]],14]//Flatten (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    A(N=100,g=14,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031932(n)).
A320705 = { i > 0 | prime(i+1) = prime(i) + 14 }.

A320706 Indices of primes followed by a gap (distance to next larger prime) of 16.

Original entry on oeis.org

282, 295, 319, 331, 335, 378, 409, 445, 476, 478, 481, 510, 560, 566, 619, 624, 674, 701, 739, 775, 856, 871, 881, 886, 935, 941, 1007, 1069, 1077, 1121, 1146, 1193, 1222, 1261, 1286, 1322, 1331, 1356, 1372, 1388, 1405, 1460, 1487, 1500, 1587, 1603, 1608, 1612, 1699, 1719, 1734, 1740, 1811, 1876, 1924, 1956, 1969, 1977, 2002, 2022, 2034, 2042, 2071
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031934.

Crossrefs

Equals A000720 o A031934.
Row 8 of A174349.
Indices of 16's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

Formula

a(n) = A000720(A031934(n)).
A320706 = { i > 0 | prime(i+1) = prime(i) + 16 }.

A320707 Indices of primes followed by a gap (distance to next larger prime) of 18.

Original entry on oeis.org

99, 180, 205, 221, 274, 293, 326, 368, 416, 529, 539, 573, 597, 602, 607, 623, 635, 639, 677, 693, 725, 785, 811, 838, 844, 852, 855, 916, 937, 939, 942, 945, 968, 997, 1028, 1093, 1130, 1151, 1203, 1227, 1252, 1304, 1311, 1349, 1508, 1514, 1519, 1523, 1540, 1547, 1629, 1636, 1641, 1654, 1656
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031936.

Crossrefs

Equals A000720 o A031936.
Row 9 of A174349.
Indices of 18's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..1700] | NthPrime(n+1) - NthPrime(n) eq 18]; // Vincenzo Librandi, Mar 22 2019
  • Mathematica
    Select[Range[1700], Prime[#] + 18 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 22 2019 *)
    Flatten[Position[Differences[Prime[Range[2000]]],18]] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    A(N=100,g=18,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031936(n)).
A320707 = { i > 0 | prime(i+1) = prime(i) + 18 } = A001223^(-1)({18}).

A320713 Indices of primes followed by a gap (distance to next larger prime) of 30.

Original entry on oeis.org

590, 650, 708, 757, 842, 890, 928, 985, 1006, 1051, 1108, 1556, 1570, 1648, 1650, 1675, 1754, 1900, 1919, 2027, 2125, 2149, 2321, 2391, 2397, 2429, 2631, 2637, 2699, 2781, 2866, 2918, 2989, 2993, 3010, 3085, 3153, 3207, 3315, 3340, 3350, 3373, 3420, 3511, 3551, 3580, 3637, 3751, 3777, 3948
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A124596.

Crossrefs

Equals A000720 o A124596.
Indices of 30's in A001223.
Row 15 of A174349.
Subsequence of A107730 (prime(n+1) ends in same digit as prime(n)).
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • PARI
    A(N=100,g=30,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A124596(n)).
A320713 = { i>0 | prime(i+1) = prime(i) + 30 } = A001223^(-1)({30}).

A320718 Indices of primes followed by a gap (distance to next larger prime) of 40.

Original entry on oeis.org

2191, 2344, 2524, 2788, 3562, 4058, 4677, 5030, 5349, 6076, 6145, 6256, 6320, 6442, 6454, 6902, 7232, 7488, 8119, 8152, 8245, 8366, 8553, 8567, 8591, 8746, 9260, 9361, 10536, 10735, 11095, 11407, 11534, 11781, 12227, 12312, 12663, 12815, 12940, 13015, 13333, 13676, 13873, 14065, 14123
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A126721.

Crossrefs

Equals A000720 o A126721.
Row 20 of A174349.
Subsequence of A107730 (prime(n+1) ends in same digit as prime(n)).
Indices of 40's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • PARI
    A(N=100,g=40,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A126721(n)).
A320718 = { i > 0 | prime(i+1) = prime(i) + 40 } = A001223^(-1)({40}).

A320719 Indices of primes followed by a gap (distance to next larger prime) of 42.

Original entry on oeis.org

1879, 3732, 4059, 4135, 4714, 5355, 5948, 6160, 6841, 7434, 7724, 7746, 7952, 7980, 8081, 8269, 8580, 9303, 9395, 9971, 10045, 10305, 10968, 11023, 11135, 11251, 11338, 11399, 11515, 11807, 11888, 11901, 12089, 12374, 12488, 13277, 13447, 14497, 14802, 15086, 15089, 15350, 15612, 15785
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A134120.

Crossrefs

Cf. A029707, A029709 (analog for gaps 2 & 4), A320701, A320702, ... A320720 (analog for gaps 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).
Equals A000720 o A134120.
Indices of 42's in A001223.
Row 21 of A174349.

Programs

  • Mathematica
    Position[Differences[Prime[Range[16000]]],42]//Flatten (* Harvey P. Dale, Feb 22 2020 *)
  • PARI
    A(N=100,g=42,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A134120(n)).

A356221 Position of second appearance of 2n in the sequence of prime gaps A001223; if 2n does not appear at least twice, a(n) = -1.

Original entry on oeis.org

3, 6, 11, 72, 42, 47, 62, 295, 180, 259, 297, 327, 446, 462, 650, 1315, 1059, 1532, 4052, 2344, 3732, 3861, 8805, 7234, 4754, 2810, 4231, 14124, 5949, 9834, 17200, 10229, 19724, 25248, 15927, 30765, 42673, 28593, 24554, 50523, 44227, 44390, 29040, 89715, 47350
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2022

Keywords

Comments

Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...

Crossrefs

The position of the first (instead of second) appearance of 2n is A038664.
Column k = 2 of A356222.
The position of the n-th appearance of 2n is A356223.
A001223 lists the prime gaps, reduced A028334.
A073491 lists numbers with gapless prime indices.
A274121 counts appearances of the n-th prime gap in those prior.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    nn=1000;
    gaps=Differences[Array[Prime,nn]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[gaps,2*n][[2,1]],{n,mnrm[Select[Range[nn],Length[Position[gaps,2*#]]>=2&]]}]
Previous Showing 11-20 of 30 results. Next