cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A031938 Lower prime of a difference of 20 between consecutive primes.

Original entry on oeis.org

887, 1637, 3089, 3413, 3947, 5717, 5903, 5987, 6803, 7649, 8243, 8543, 8783, 8867, 9257, 10223, 10433, 10667, 11027, 11093, 11177, 11447, 11597, 11657, 11867, 11987, 13127, 13421, 13649, 14087, 14177, 15473, 16943, 17519, 17807, 18149, 18461, 18617, 18839
Offset: 1

Views

Author

Keywords

Examples

			887 is a term as the next prime is 907.
		

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | NextPrime(p)-p eq 20]; // Bruno Berselli, Apr 09 2013
  • Mathematica
    (*M6*) a=887; S={}; Do[b=NextPrime[a]; If[b-a==20,AppendTo[S,a]]; a=b,{10^4}]; S (* Zak Seidov, Aug 14 2009 *)
    Transpose[Select[Partition[Prime[Range[2000]], 2, 1], Last[#] - First[#] == 20 &]][[1]] (* Bruno Berselli, Apr 09 2013 *)

Formula

a(n) = prime(A320708(n)). - R. J. Mathar, Apr 30 2024

Extensions

Entries and b-file checked by Zak Seidov, Aug 14 2009

A107730 Numbers n such that prime(n+1) has the same last digit as prime(n).

Original entry on oeis.org

34, 42, 53, 61, 68, 80, 82, 101, 106, 115, 125, 127, 138, 141, 145, 154, 157, 172, 175, 177, 191, 193, 204, 222, 233, 258, 259, 266, 269, 279, 289, 306, 308, 310, 316, 324, 369, 383, 397, 399, 403, 418, 422, 431, 442, 443, 474, 480, 491, 497, 500, 502, 518
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2007

Keywords

Examples

			a(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9.
a(2) = 42 because prime(42) = 181, prime(43) = 191, both end with the digit 1.
a(4) = 61 because prime(61) = 283, prime(62) = 293, both end with the digit 3.
a(5) = 68 because prime(68) = 337, prime(69) = 347, both end with the digit 7.
		

Crossrefs

Union of rows r == 0 (mod 5) of A174349. Indices of multiples of 10 (A008592) in A001223.

Programs

  • GAP
    P:=List(Filtered([1..4000],IsPrime),n->Reversed(ListOfDigits(n)));;
    a:=Filtered([1..Length(P)-1],i->P[i+1][1]=P[i][1]); # Muniru A Asiru, Oct 31 2018
  • Maple
    isA107730 := proc(n) local ldign, ldign2 ; ldign := convert(ithprime(n),base,10) ; ldign2 := convert(ithprime(n+1),base,10) ; if op(1,ldign) = op(1,ldign2) then true ; else false ; fi ; end: for n from 1 to 600 do if isA107730(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 15 2007
  • Mathematica
    Select[Range[200],IntegerDigits[Prime[ # ]][[ -1]]==IntegerDigits[Prime[ #+1]][[ -1]]&] (* Stefan Steinerberger, Jun 14 2007 *)
    Flatten[Position[Partition[Prime[Range[600]],2,1],?(Mod[#[[1]],10] == Mod[#[[2]],10]&),{1},Heads->False]] (* _Harvey P. Dale, Aug 20 2015 *)
  • PARI
    isok(n) = (prime(n) % 10) == prime(n+1) % 10; \\ Michel Marcus, Feb 16 2017
    
  • PARI
    is_A107730(n)=!((nextprime(1+n=prime(n))-n)%10) \\ This (...) is twice as fast as prime(n+1)-prime(n), and prime(n) becomes very slow for n > 41538, even with primelimit = 10^7. - M. F. Hasler, Oct 24 2018
    

Formula

Numbers n such that A000040(n)==A000040(n+1) mod 10, or A000040(n+1) - A000040(n) = 10*k for some integer k, or n such that A129750(n) = 0. [Corrected and edited by M. F. Hasler, Oct 24 2018]
A107730 = A001223^(-1)(A008592) = { i > 0 | A001223(i) == 0 (mod 10)} = U_{k>0} {A174349(5k,j); j >= 1}. - M. F. Hasler, Oct 24 2018
Union of A320703, A320708, A320713, A320718, ... A116493,..., A116496 ... etc. - R. J. Mathar, Apr 30 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Jun 14 2007
Showing 1-2 of 2 results.