A052359 Least prime in A031938 (lesser of primes differing by 20) whose distance to the next 20-twin is 6*n.
Keywords
Examples
For n = 4, a(4) = 46703 results in prime quadruple [46703, 46723, 46727, 46747] and difference pattern [20, 4, 20]. For n = 14, a(14) = 5903 yields prime quadruple [5903, 5923, 5987, 6007] with 4 primes in the medial gap, and difference pattern [20, 64, 20].
Links
- Amiram Eldar, Table of n, a(n) for n = 4..1003
Crossrefs
Programs
-
Mathematica
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 20] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 3; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[15000] (* Amiram Eldar, Mar 05 2025 *)
-
PARI
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 20, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 3; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
Comments