cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A052380 a(n) = D is the smallest distance (D) between 2 non-overlapping prime twins differing by d=2n; these twins are [p,p+d] or [p+D,p+D+d] and p > 3.

Original entry on oeis.org

6, 6, 6, 12, 12, 12, 18, 18, 18, 24, 24, 24, 30, 30, 30, 36, 36, 36, 42, 42, 42, 48, 48, 48, 54, 54, 54, 60, 60, 60, 66, 66, 66, 72, 72, 72, 78, 78, 78, 84, 84, 84, 90, 90, 90, 96, 96, 96, 102, 102, 102, 108, 108, 108, 114, 114, 114, 120, 120, 120, 126, 126, 126, 132
Offset: 1

Views

Author

Labos Elemer, Mar 13 2000

Keywords

Comments

For d=D the quadruple of primes becomes a triple: [p,p+d],[p+d,p+2d].
Without the p > 3 condition, a(1)=2.
The starter prime p, is followed by a prime d-pattern of [d,D-d,d], where D-d=a(n)-2n is 4,2 or 0; these d-patterns are as follows: [2,4,2], [4,2,4], [6,6], [8,4,8], [10,2,10], [12,12], etc.
All terms of this sequence have digital root 3, 6 or 9. - J. W. Helkenberg, Jul 24 2013
a(n+1) is also the number of the circles added at the n-th iteration of the pattern generated by the construction rules: (i) At n = 0, there are six circles of radius s with centers at the vertices of a regular hexagon of side length s. (ii) At n > 0, draw a circle with center at each boundary intersection point of the figure of the previous iteration. The pattern seems to be the flower of life except at the central area. See illustration. - Kival Ngaokrajang, Oct 23 2015

Examples

			n=5, d=2n=10, the minimal distance for 10-twins is 12 (see A031928, d=10) the smallest term in A053323. It occurs first between twins of [409,419] and [421,431]; see 409 = A052354(1) = A052376(1) = A052381(5).
		

Crossrefs

Programs

  • Mathematica
    Table[2 n + 4 - 2 Mod[n + 2, 3], {n, 66}] (* Michael De Vlieger, Oct 23 2015 *)
  • PARI
    vector(200, n, n--; 6*(n\3+1)) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = 6*ceiling(n/3) = 6*ceiling(d/6) = D = D(n).
a(n) = 2n + 4 - 2((n+2) mod 3). - Wesley Ivan Hurt, Jun 30 2013
a(n) = 6*A008620(n-1). - Kival Ngaokrajang, Oct 23 2015

A052381 The smallest initial prime of 2 non-overlapping d-twin primes if the distance between pairs (D) is minimal (see A052380).

Original entry on oeis.org

3, 7, 47, 389, 409, 199, 24749, 3373, 20183, 46703, 19867, 16763, 142811, 14563, 69593, 763271, 276637, 255767, 363989, 383179, 247099, 2130809, 15370423, 3565931, 458069, 9401647, 6314393, 20823437, 9182389, 4911251, 15442121
Offset: 1

Views

Author

Labos Elemer, Mar 13 2000

Keywords

Comments

A prime quadruple (triple), {[p,p+d],[p+D,p+D+d]} is called a "non-overlapping" (disjoint or touching) pair of twins if D = distance >= d = difference "inside" twin.

Examples

			If n=23, d=46, min{D}=48 then the first suitable quadruple of primes is [15370423, 15370469, 15370471, 15370517] with difference pattern [46, 2, 46]; if n=3, d=6, min{D}=6 then the first such triple is [47, 53, 53, 59] = [47, 53, 59] with difference pattern [6, 6].
		

Crossrefs

The first 10 terms here appear as initial terms in A052350-A052359.

Formula

Smallest p so that [p, p+2n], [p+min{D}, p+2n+min{D}] is a quadruple (or triple if d=min{D}) of consecutive primes.

Extensions

Corrected by Jud McCranie, Jan 04 2001
a(11) corrected by Sean A. Irvine, Nov 07 2021

A053323 First differences of A031928.

Original entry on oeis.org

42, 60, 42, 54, 72, 12, 126, 30, 54, 60, 18, 78, 24, 18, 90, 102, 18, 12, 102, 18, 78, 150, 72, 156, 72, 24, 78, 78, 138, 12, 24, 36, 54, 378, 126, 72, 12, 36, 120, 30, 84, 108, 252, 156, 30, 24, 12, 126, 60, 54, 30, 348, 18, 12, 12, 18, 12, 54, 12, 24, 120, 180, 198, 48
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Comments

Minimal value is 12; a(n) = 12 for n = 6, 22, 128, 172, 218, 229, 248, 253, 320, 344. - Zak Seidov, Jun 12 2017

Crossrefs

Programs

  • Mathematica
    Differences[Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==10&][[All,1]]] (* Harvey P. Dale, Jan 16 2017 *)

A052359 Least prime in A031938 (lesser of primes differing by 20) whose distance to the next 20-twin is 6*n.

Original entry on oeis.org

46703, 37223, 65147, 20369, 63929, 71999, 11597, 11027, 99767, 93503, 5903, 14087, 115163, 24821, 104891, 24923, 11867, 53381, 65657, 93581, 99623, 11447, 18461, 126761, 32213, 27653, 72797, 5717, 154247, 54449, 27827, 10223, 56747, 18617, 13421, 10433, 8543, 60107
Offset: 4

Views

Author

Labos Elemer, Mar 07 2000

Keywords

Comments

The smallest distance between 20-twins is 24 [= A052380(10)], while its minimal increment is 6.
a(n) = p starts [p, p+20, p+6n, p+6n+20] and [20, 6n-20, 20] patterns of primes and their difference.
a(n) = p is the smallest prime which starts a [p, p+20] twin followed by the next [p+6n, p+6n+20] twin.

Examples

			For n = 4, a(4) = 46703 results in prime quadruple [46703, 46723, 46727, 46747] and difference pattern [20, 4, 20].
For n = 14, a(14) = 5903 yields prime quadruple [5903, 5923, 5987, 6007] with 4 primes in the medial gap, and difference pattern [20, 64, 20].
		

Crossrefs

Programs

  • Mathematica
    seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 20] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 3; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[15000] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 20, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 3; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025

Extensions

Offset changed to 1 by Michel Marcus, Apr 30 2019
Name and offset corrected by Amiram Eldar, Mar 05 2025

A053325 First differences of A031932.

Original entry on oeis.org

180, 24, 456, 66, 24, 90, 456, 174, 264, 192, 318, 66, 210, 120, 66, 120, 84, 570, 84, 102, 54, 30, 276, 354, 324, 72, 84, 180, 156, 24, 336, 270, 114, 666, 324, 150, 90, 324, 96, 24, 126, 186, 108, 126, 24, 150, 162, 528, 186, 54, 120, 90, 300, 456, 120, 150
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[Transpose[Select[Partition[Prime[Range[1500]],2,1], Last[#]- First[#] == 14&]][[1]]] (* Harvey P. Dale, Aug 24 2012 *)

A053321 First differences of A031924.

Original entry on oeis.org

8, 16, 6, 8, 12, 10, 48, 20, 6, 10, 6, 60, 18, 6, 6, 8, 60, 22, 14, 6, 10, 50, 10, 60, 38, 16, 6, 8, 16, 6, 8, 6, 40, 6, 24, 50, 6, 18, 190, 6, 24, 6, 14, 22, 20, 30, 34, 6, 14, 6, 58, 6, 30, 6, 8, 52, 8, 30, 40, 6, 66, 20, 40, 50, 10, 48, 12, 8, 36, 84, 6, 6, 24, 84, 40, 6, 66, 14, 24
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • GAP
    P:=Filtered([1..2100],IsPrime);;
    P1:=List(Filtered([1..Length(P)-1],i->P[i+1]-P[i]=6),k->P[k]);;
    a:=List([1..Length(P1)-1],i->P1[i+1]-P1[i]);; Print(a); # Muniru A Asiru, Dec 23 2018
  • Mathematica
    With[{p = Prime[Range[330]]}, Differences[p[[Position[Differences[p], 6] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)

A053322 First differences of A031926.

Original entry on oeis.org

270, 30, 12, 48, 30, 12, 192, 18, 18, 24, 18, 150, 18, 54, 126, 54, 30, 180, 66, 84, 36, 12, 162, 90, 156, 24, 150, 60, 30, 30, 186, 72, 78, 54, 36, 42, 102, 36, 30, 102, 30, 168, 12, 228, 42, 132, 78, 18, 162, 408, 60, 234, 168, 192, 108, 120, 18, 210, 174, 120, 90
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Comments

Minimal value 12 is for n = 3, 6, 22, 43, 90, 123, 125, 135, 144, 147, 201, 255, 276, 287, 310, 338, 350. - Zak Seidov, Jun 12 2017

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[1000]]}, Differences[p[[Position[Differences[p], 8] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)

A053324 First differences of A031930.

Original entry on oeis.org

12, 256, 42, 110, 42, 136, 200, 204, 36, 70, 152, 40, 12, 20, 178, 80, 22, 78, 180, 30, 198, 102, 48, 132, 42, 156, 150, 122, 18, 102, 22, 68, 72, 16, 152, 60, 100, 272, 58, 90, 20, 298, 12, 140, 130, 12, 110, 76, 42, 120, 48, 110, 64, 158, 88, 320, 100, 174, 50
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[Select[Partition[Prime[Range[1000]],2,1],#[[2]]-#[[1]]==12&][[;;,1]]] (* Harvey P. Dale, Sep 28 2024 *)

A053326 First differences of A031934.

Original entry on oeis.org

102, 180, 108, 30, 342, 210, 318, 252, 18, 42, 210, 414, 54, 456, 54, 402, 258, 342, 258, 756, 126, 78, 42, 450, 84, 576, 588, 66, 366, 228, 420, 246, 366, 240, 354, 90, 240, 156, 150, 198, 510, 246, 96, 828, 156, 60, 36, 870, 180, 114, 54, 660, 600, 522, 330
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[2000]]}, Differences[p[[Position[Differences[p], 16] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)

A053327 First differences of A031936.

Original entry on oeis.org

546, 190, 122, 378, 154, 248, 342, 358, 942, 86, 270, 214, 50, 40, 140, 100, 30, 326, 150, 274, 528, 218, 222, 78, 52, 38, 540, 192, 42, 40, 26, 162, 262, 308, 570, 348, 184, 456, 200, 244, 498, 62, 378, 1488, 52, 50, 42, 160, 60, 780, 78, 42, 128, 22, 270, 66
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[2000]]}, Differences[p[[Position[Differences[p], 18] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)
Showing 1-10 of 10 results.