cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A091466 Table (by antidiagonals) of labeled alternating octopuses with n black nodes and k white nodes. Each type of object labeled from its own label set.

Original entry on oeis.org

1, 2, 2, 0, 14, 0, 0, 36, 36, 0, 0, 24, 336, 24, 0, 0, 0, 1296, 1296, 0, 0, 0, 0, 2160, 14832, 2160, 0, 0, 0, 0, 1440, 80640, 80640, 1440, 0, 0, 0, 0, 0, 233280, 1082880, 233280, 0, 0, 0, 0, 0, 0, 362880, 7776000, 7776000, 362880, 0, 0, 0, 0, 0, 0, 241920, 33264000
Offset: 1

Views

Author

Christian G. Bower, Jan 12 2004

Keywords

Examples

			1  2    0     0       0 ...
2  4   36    24       0 ...
0 36  336  1296    2160 ...
0 24 1296 14832   80640 ...
0  0 2160 80640 1082880 ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 113 (2.4.41).

Crossrefs

Formula

Double e.g.f.: A(x, y) = Sum_{i, j>=0} (x^i*y^j/(i!*j!)) = log((1-x*y)^2/(1-x*y*(3+x+y))).

A156815 Triangle T(n, k) = n!*StirlingS2(n, k)/binomial(n, k), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 28, 36, 24, 0, 24, 180, 300, 240, 120, 0, 120, 1488, 3240, 3120, 1800, 720, 0, 720, 15120, 43344, 50400, 33600, 15120, 5040, 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320, 0, 40320, 2570400, 13068000, 22377600, 20018880, 11430720, 4656960, 1451520, 362880
Offset: 0

Views

Author

Roger L. Bagula, Feb 16 2009

Keywords

Examples

			Triangle begins as:
  1;
  0,    1;
  0,    1,      2;
  0,    2,      6,      6;
  0,    6,     28,     36,     24;
  0,   24,    180,    300,    240,    120;
  0,  120,   1488,   3240,   3120,   1800,    720;
  0,  720,  15120,  43344,  50400,  33600,  15120,   5040;
  0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99.

Crossrefs

Programs

  • Magma
    [Factorial(n)*StirlingSecond(n,k)/Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
    
  • Mathematica
    T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k];
    Table[T[n, k], {n, 0, 12}, {k,0,n}]//Flatten
  • Sage
    flatten([[factorial(n)*stirling_number2(n,k)/binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021

Formula

T(n, k) = n!*StirlingS2(n, k)/binomial(n, k).
From G. C. Greubel, Jun 10 2021: (Start)
T(n, 1) = T(n, n) = n!.
T(n, 2) = 2*A029767(n+1).
T(n, n-1) = A180119(n). (End)

Extensions

Edited by G. C. Greubel, Jun 10 2021

A371685 Triangle read by rows: T(n, k) = n! * Sum_{j=0..n-1} binomial(k - 1, j) / (j + 1).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 5, 6, 9, 14, 14, 24, 36, 56, 90, 94, 120, 180, 280, 450, 744, 444, 720, 1080, 1680, 2700, 4464, 7560, 3828, 5040, 7560, 11760, 18900, 31248, 52920, 91440, 25584, 40320, 60480, 94080, 151200, 249984, 423360, 731520, 1285200
Offset: 0

Views

Author

Peter Luschny, Apr 06 2024

Keywords

Examples

			Triangle starts:
[0]    0;
[1]    1,    1;
[2]    1,    2,    3;
[3]    5,    6,    9,    14;
[4]   14,   24,   36,    56,    90;
[5]   94,  120,  180,   280,   450,   744;
[6]  444,  720, 1080,  1680,  2700,  4464,  7560;
[7] 3828, 5040, 7560, 11760, 18900, 31248, 52920, 91440;
		

Crossrefs

Cf. A029767 (main diagonal), A024167 (column 0), A371768 (row sums).

Programs

  • Maple
    T := (n, k) -> local j; n!*add(binomial(k-1, j)/(j + 1), j = 0..n-1):
    T := (n, k) -> local j; n!*ifelse(n = 0, 0, ifelse(k=0, add(-(-1)^j/j, j = 1..n), (2^k - 1) / k)):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);

Formula

Restricted to the range 1 <= k <= n: T(n, k) = n!*(2^k - 1)/k.

A371762 Triangle read by rows: the polynomial coefficients of the numerator of the rational solution of the linear recurrence equations of the rows of A371761.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 6, 0, 1, 19, 46, 24, 0, 1, 46, 251, 326, 120, 0, 1, 104, 1163, 3016, 2556, 720, 0, 1, 225, 4831, 23283, 35848, 22212, 5040, 0, 1, 473, 18523, 158531, 417148, 437228, 212976, 40320, 0, 1, 976, 66886, 976636, 4285549, 7084804, 5586444, 2239344, 362880
Offset: 0

Views

Author

Peter Luschny, Apr 06 2024

Keywords

Comments

Let R(n) = N(n)/D(n) denote the ordinary rational generating function of row n of A371761 as given by its linear recurrence equation. N(n) is the row polynomial Sum_{k=0..n} T(n, k)*x^k and D(n) = Sum_{k=0..n} Stirling1(n+1, n+1-k)*x^k. Thus A371761(n, k) = [x^k] N(n)/D(n).

Examples

			Triangle starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1,   2;
  [3] 0, 1,   7,     6;
  [4] 0, 1,  19,    46,     24;
  [5] 0, 1,  46,   251,    326,     120;
  [6] 0, 1, 104,  1163,   3016,    2556,     720;
  [7] 0, 1, 225,  4831,  23283,   35848,   22212,    5040;
  [8] 0, 1, 473, 18523, 158531,  417148,  437228,  212976,   40320;
  [9] 0, 1, 976, 66886, 976636, 4285549, 7084804, 5586444, 2239344, 362880;
.
The rational generating function for row 3 of A371761 is:
gf = (6*x^3 + 7*x^2 + x)/(-6*x^3 + 11*x^2 - 6*x + 1).
		

Crossrefs

Cf. A029767 (row sums), A000142 (main diagonal), A067318 (subdiagonal).
Cf. A371761.

A366953 Expansion of e.g.f. -log(1 - x^2/(1-x)^3).

Original entry on oeis.org

0, 0, 2, 18, 156, 1560, 18600, 262080, 4284000, 79833600, 1671788160, 38878963200, 994367404800, 27741377664000, 838406080512000, 27287153858764800, 951529253875200000, 35392677532692480000, 1398727294865252352000, 58529661706809925632000, 2585234639710708457472000
Offset: 0

Views

Author

Enrique Navarrete, Oct 29 2023

Keywords

Comments

a(n) is the number of ways to choose two elements from each branch of labeled octopuses with n nodes.
A328055(n) is the corresponding sequence if we choose one element only.

Crossrefs

Previous Showing 11-15 of 15 results.