cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 314 results. Next

A372428 Sum of binary indices of n minus sum of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 2, 4, 5, 1, -1, 2, 0, 3, 3, 4, 2, 4, 4, 4, 6, 6, 3, 8, 4, 1, 0, 0, 2, 3, -2, 2, 4, 4, -2, 5, -1, 6, 7, 5, 1, 5, 4, 6, 5, 6, -1, 9, 9, 8, 6, 6, 1, 11, 1, 8, 13, 1, -1, 1, -9, 1, 0, 4, -7, 4, -9, 0, 6, 4, 6, 7, -5, 5, 5, 0, -8
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so a(65) = 8 - 9 = -1.
		

Crossrefs

Positions of zeros are A372427.
For minimum instead of sum we have A372437.
For length instead of sum we have A372441, zeros A071814.
For maximum instead of sum we have A372442, zeros A372436.
Positions of odd terms are A372586, even A372587.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Total[bix[n]]-Total[prix[n]],{n,100}]
  • Python
    from itertools import count, islice
    from sympy import sieve, factorint
    def a_gen():
        for n in count(1):
            b = sum((i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1')
            p = sum(sieve.search(i)[0] for i in factorint(n, multiple=True))
            yield(b-p)
    A372428_list = list(islice(a_gen(), 83)) # John Tyler Rascoe, May 04 2024
    
  • Python
    from sympy import primepi, factorint
    def A372428(n): return int(sum(i for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')-sum(primepi(p)*e for p, e in factorint(n).items())) # Chai Wah Wu, Oct 18 2024

Formula

a(n) = A029931(n) - A056239(n).

A372471 Irregular triangle read by rows where row n lists the binary indices of the n-th prime number.

Original entry on oeis.org

2, 1, 2, 1, 3, 1, 2, 3, 1, 2, 4, 1, 3, 4, 1, 5, 1, 2, 5, 1, 2, 3, 5, 1, 3, 4, 5, 1, 2, 3, 4, 5, 1, 3, 6, 1, 4, 6, 1, 2, 4, 6, 1, 2, 3, 4, 6, 1, 3, 5, 6, 1, 2, 4, 5, 6, 1, 3, 4, 5, 6, 1, 2, 7, 1, 2, 3, 7, 1, 4, 7, 1, 2, 3, 4, 7, 1, 2, 5, 7, 1, 4, 5, 7, 1, 6, 7
Offset: 1

Views

Author

Gus Wiseman, May 07 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			We have prime(12) = (2^1 + 2^3 + 2^6)/2, so row 12 is (1,3,6).
Each prime followed by its binary indices:
   2: 2
   3: 1 2
   5: 1 3
   7: 1 2 3
  11: 1 2 4
  13: 1 3 4
  17: 1 5
  19: 1 2 5
  23: 1 2 3 5
  29: 1 3 4 5
  31: 1 2 3 4 5
  37: 1 3 6
  41: 1 4 6
  43: 1 2 4 6
  47: 1 2 3 4 6
		

Crossrefs

Row lengths are A014499.
Second column is A023506(n) + 1.
Final column is A035100.
Prime-indexed rows of A048793.
Row-sums are A372429, restriction of A029931 (sum of binary indices).
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020.
A070939 gives length of binary expansion.

Programs

  • Mathematica
    Table[Join@@Position[Reverse[IntegerDigits[Prime[n],2]],1],{n,15}]

A372475 Length of binary expansion (or number of bits) of the n-th squarefree number.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The 10th squarefree number is 14, with binary expansion (1,1,1,0), so a(10) = 4.
		

Crossrefs

For prime instead of squarefree we have A035100, 1's A014499, 0's A035103.
Restriction of A070939 to A005117.
Run-lengths are A077643.
For weight instead of length we have A372433 (restrict A000120 to A005117).
For zeros instead of length we have A372472, firsts A372473.
Positions of first appearances are A372540.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    IntegerLength[Select[Range[1000],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A372475(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m).bit_length() # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A070939(A005117(n)).
a(n) = A372472(n) + A372433(n).

A124757 Zero-based weighted sum of compositions in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 3, 4, 5, 6, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
Sum of all positions of 1's except the last in the reversed binary expansion of n. For example, the reversed binary expansion of 14 is (0,1,1,1), so a(14) = 2 + 3 = 5. Keeping the last position gives A029931. - Gus Wiseman, Jan 17 2023

Examples

			Composition number 11 is 2,1,1; 0*2+1*1+2*1 = 3, so a(11) = 3.
The table starts:
  0
  0
  0 1
  0 1 2 3
		

Crossrefs

Cf. A066099, A070939, A029931, A011782 (row lengths), A001788 (row sums).
Row sums of A048793 if we delete the last part of every row.
For prime indices instead of standard comps we have A359674, rev A359677.
Positions of first appearances are A359756.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reverse A030308.
A230877 adds up positions of 1's in binary expansion, length A000120.
A359359 adds up positions of 0's in binary expansion, length A023416.

Programs

  • Mathematica
    Table[Total[Most[Join@@Position[Reverse[IntegerDigits[n,2]],1]]],{n,30}]

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i=1..k} (i-1)*b(i).
For n>0, a(n) = A029931(n) - A070939(n).

A333768 Minimum part of the n-th composition in standard order. a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 06 2020

Keywords

Comments

One plus the shortest run of 0's after a 1 in the binary expansion of n > 0.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 148th composition in standard order is (3,2,3), so a(148) = 2.
		

Crossrefs

Positions of first appearances (ignoring index 0) are A000079.
Positions of terms > 1 are A022340.
The version for prime indices is A055396.
The maximum part is given by A333766.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min@@stc[n]],{n,0,100}]

Formula

For n > 0, a(n) = A333767(n) + 1.

A358134 Triangle read by rows whose n-th row lists the partial sums of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 3, 1, 3, 1, 2, 3, 4, 3, 4, 2, 4, 2, 3, 4, 1, 4, 1, 3, 4, 1, 2, 4, 1, 2, 3, 4, 5, 4, 5, 3, 5, 3, 4, 5, 2, 5, 2, 4, 5, 2, 3, 5, 2, 3, 4, 5, 1, 5, 1, 4, 5, 1, 3, 5, 1, 3, 4, 5, 1, 2, 5, 1, 2, 4, 5, 1, 2, 3, 5, 1, 2, 3, 4, 5, 6, 5, 6, 4, 6, 4, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  2
  1 2
  3
  2 3
  1 3
  1 2 3
  4
  3 4
  2 4
  2 3 4
  1 4
  1 3 4
  1 2 4
  1 2 3 4
		

Crossrefs

See link for sequences related to standard compositions.
First element in each row is A065120.
Rows are the partial sums of rows of A066099.
Last element in each row is A070939.
An adjusted version is A242628, ranked by A253565.
The first differences instead of partial sums are A358133.
The version for Heinz numbers of partitions is A358136, ranked by A358137.
Row sums are A359042.
A011782 counts compositions.
A351014 counts distinct runs in standard compositions.
A358135 gives last minus first of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Join@@Table[Accumulate[stc[n]],{n,100}]

A359674 Zero-based weighted sum of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 5, 0, 4, 3, 6, 0, 6, 0, 7, 4, 5, 0, 9, 3, 6, 6, 9, 0, 8, 0, 10, 5, 7, 4, 11, 0, 8, 6, 12, 0, 10, 0, 11, 8, 9, 0, 14, 4, 9, 7, 13, 0, 12, 5, 15, 8, 10, 0, 14, 0, 11, 10, 15, 6, 12, 0, 15, 9, 11, 0, 17, 0, 12, 9, 17, 5, 14, 0, 18
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The prime indices of 12 are {1,1,2}, so a(12) = 0*1 + 1*1 + 2*2 = 5.
		

Crossrefs

Positions of last appearances (except 0) are A001248.
Positions of 0's are A008578.
The version for standard compositions is A124757, reverse A231204.
The one-based version is A304818, reverse A318283.
Positions of first appearances are A359675, reverse A359680.
First position of n is A359676(n), reverse A359681.
The reverse version is A359677, firsts A359679.
Number of appearances of positive n is A359678(n).
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    Table[wts[primeMS[n]],{n,100}]

A372442 (Greatest binary index of n) minus (greatest prime index of n).

Original entry on oeis.org

1, 0, 2, 0, 1, -1, 3, 2, 1, -1, 2, -2, 0, 1, 4, -2, 3, -3, 2, 1, 0, -4, 3, 2, -1, 3, 1, -5, 2, -6, 5, 1, -1, 2, 4, -6, -2, 0, 3, -7, 2, -8, 1, 3, -3, -9, 4, 2, 3, -1, 0, -10, 4, 1, 2, -2, -4, -11, 3, -12, -5, 2, 6, 1, 2, -12, 0, -2, 3, -13, 5, -14, -5, 4, -1
Offset: 2

Views

Author

Gus Wiseman, May 07 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

For sum instead of maximum we have A372428, zeros A372427.
Positions of zeros are A372436.
For minimum instead of maximum we have A372437, zeros {}.
For length instead of maximum we have A372441, zeros A071814.
Positions of odd terms are A372588, even A372589.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Max[bix[n]]-Max[prix[n]],{n,2,100}]

Formula

a(n) = A070939(n) - A061395(n) = A029837(n) - A061395(n) for n > 1.

A372540 Least k such that the k-th squarefree number has binary expansion of length n. Index of the smallest squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 4, 7, 12, 21, 40, 79, 158, 315, 625, 1246, 2492, 4983, 9963, 19921, 39845, 79689, 159361, 318726, 637462, 1274919, 2549835, 5099651, 10199302, 20398665, 40797328, 81594627, 163189198, 326378285, 652756723, 1305513584, 2611027095, 5222054082, 10444108052
Offset: 0

Views

Author

Gus Wiseman, May 10 2024

Keywords

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
       1:                  1 ~ {1}
       2:                 10 ~ {2}
       5:                101 ~ {1,3}
      10:               1010 ~ {2,4}
      17:              10001 ~ {1,5}
      33:             100001 ~ {1,6}
      65:            1000001 ~ {1,7}
     129:           10000001 ~ {1,8}
     257:          100000001 ~ {1,9}
     514:         1000000010 ~ {2,10}
    1027:        10000000011 ~ {1,2,11}
    2049:       100000000001 ~ {1,12}
    4097:      1000000000001 ~ {1,13}
    8193:     10000000000001 ~ {1,14}
   16385:    100000000000001 ~ {1,15}
   32770:   1000000000000010 ~ {2,16}
   65537:  10000000000000001 ~ {1,17}
  131073: 100000000000000001 ~ {1,18}
		

Crossrefs

Counting zeros instead of length gives A372473, firsts of A372472.
For prime instead of squarefree we have:
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
- bits A372684, firsts of A035100
Positions of first appearances in A372475, run-lengths A077643.
For weight instead of length we have A372541, firsts of A372433.
Indices of the squarefree numbers listed by A372683.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A070939 counts bits, binary length, or length of binary expansion.

Programs

  • Mathematica
    nn=1000;
    ssnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
    dcs=IntegerLength[Select[Range[nn],SquareFreeQ],2];
    Table[Position[dcs,i][[1,1]],{i,ssnm[dcs]}]
  • Python
    from itertools import count
    from math import isqrt
    from sympy import mobius, factorint
    def A372540(n): return next(sum(mobius(a)*(k//a**2) for a in range(1, isqrt(k)+1)) for k in count(1<Chai Wah Wu, May 12 2024

Formula

A005117(a(n)) = A372683(n).
a(n) = A143658(n)+1 for n > 1. - Chai Wah Wu, Aug 26 2024

Extensions

a(24)-a(34) from Chai Wah Wu, May 12 2024

A261079 Sum of index differences between prime factors of n, summed over all unordered pairs of primes present (with multiplicity) in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 3, 1, 0, 0, 2, 0, 4, 2, 4, 0, 3, 0, 5, 0, 6, 0, 4, 0, 0, 3, 6, 1, 4, 0, 7, 4, 6, 0, 6, 0, 8, 2, 8, 0, 4, 0, 4, 5, 10, 0, 3, 2, 9, 6, 9, 0, 7, 0, 10, 4, 0, 3, 8, 0, 12, 7, 6, 0, 6, 0, 11, 2, 14, 1, 10, 0, 8, 0, 12, 0, 10, 4, 13, 8, 12, 0, 6, 2, 16, 9, 14, 5, 5, 0, 6, 6, 8, 0, 12, 0, 15, 4, 15, 0, 6, 0, 8, 10, 12, 0, 14, 6, 18, 8, 16, 3, 10
Offset: 1

Views

Author

Antti Karttunen, Sep 23 2015

Keywords

Examples

			For n = 1 the prime factorization is empty, thus there is nothing to sum, so a(1) = 0.
For n = 6 = 2*3 = prime(1) * prime(2), a(6) = 1 because the (absolute value of) difference between prime indices of 2 and 3 is 1.
For n = 10 = 2*5 = prime(1) * prime(3), a(10) = 2 because the difference between prime indices of 2 and 5 is 2.
For n = 12 = 2*2*3 = prime(1) * prime(1) * prime(2), a(12) = 2 because the difference between prime indices of 2 and 3 is 1, and the pair (2,3) occurs twice as one can pick either one of the two 2's present in the prime factorization to be a pair of a single 3. Note that the index difference between 2 and 2 is 0, thus the pair (2,2) of prime divisors does not contribute to the sum.
For n = 36 = 2*2*3*3, a(36) = 4 because the index difference between 2 and 3 is 1, and the prime factor pair (2,3) occurs 2^2 = four times in total. As the index difference is zero between 2 and 2 as well as between 3 and 3, the pairs (2,2) and (3,3) do not contribute to the sum.
		

Crossrefs

Cf. A000720.
Cf. A000961 (positions of zeros), A006094 (positions of ones).
Cf. also A260737.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.
A304818 adds up partial sums of reversed prime indices, row sums of A359361.
A318283 adds up partial sums of prime indices, row sums of A358136.

Programs

  • Mathematica
    Table[Function[p, Total@ Map[Function[b, Times @@ {First@ Differences@ PrimePi@ b, Count[Subsets[p, {2}], c_ /; SameQ[c, b]]}], Subsets[Union@ p, {2}]]][Flatten@ Replace[FactorInteger@ n, {p_, e_} :> ConstantArray[p, e], 2]], {n, 120}] (* Michael De Vlieger, Mar 08 2017 *)

Formula

a(n) = A304818(n) - A318283(n). - Gus Wiseman, Jan 09 2023
a(n) = 2*A304818(n) - A359362(n). - Gus Wiseman, Jan 09 2023
Previous Showing 101-110 of 314 results. Next