cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A359361 Irregular triangle read by rows whose n-th row lists the partial sums of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 4, 3, 4, 5, 2, 3, 4, 6, 4, 5, 3, 5, 1, 2, 3, 4, 7, 2, 4, 5, 8, 3, 4, 5, 4, 6, 5, 6, 9, 2, 3, 4, 5, 3, 6, 6, 7, 2, 4, 6, 4, 5, 6, 10, 3, 5, 6, 11, 1, 2, 3, 4, 5, 5, 7, 7, 8, 4, 7, 2, 4, 5, 6, 12, 8, 9, 6, 8, 3, 4, 5, 6, 13
Offset: 2

Views

Author

Gus Wiseman, Dec 30 2022

Keywords

Comments

The partial sums of a sequence (a, b, c, ...) are (a, a+b, a+b+c, ...).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The partition with Heinz number n is the reversed n-th row of A112798.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 2
   5: 3
   6: 2 3
   7: 4
   8: 1 2 3
   9: 2 4
  10: 3 4
  11: 5
  12: 2 3 4
  13: 6
  14: 4 5
  15: 3 5
  16: 1 2 3 4
For example, the integer partition with Heinz number 90 is (3,2,2,1), so row n = 90 is (3,5,7,8).
		

Crossrefs

Row-lengths are A001222.
The version for standard compositions is A048793, non-reversed A358134.
Last element in each row is A056239.
First element in each row is A061395
Rows are the partial sums of rows of A296150.
Row-sums are A304818.
A reverse version is A358136, row sums A318283, Heinz numbers A358137.
The sorted Heinz numbers of rows are A359397.
A000041 counts partitions, strict A000009.
A112798 lists prime indices, product A003963.
A355536 lists differences of prime indices.

Programs

  • Maple
    T:= n-> ListTools[PartialSums](sort([seq(numtheory
           [pi](i[1])$i[2], i=ifactors(n)[2])], `>`))[]:
    seq(T(n), n=2..50);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Accumulate[Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,2,30}]

A362559 Number of integer partitions of n whose weighted sum is divisible by n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 5, 7, 8, 11, 14, 14, 18, 25, 28, 26, 42, 47, 52, 73, 77, 100, 118, 122, 158, 188, 219, 266, 313, 367, 412, 489, 578, 698, 809, 914, 1094, 1268, 1472, 1677, 1948, 2305, 2656, 3072, 3527, 4081, 4665, 5342, 6225, 7119, 8150, 9408
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Also the number of n-multisets of positive integers that (1) have integer mean, (2) cover an initial interval, and (3) have weakly decreasing multiplicities.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.

Examples

			The weighted sum of y = (4,2,2,1) is 1*4+2*2+3*2+4*1 = 18, which is a multiple of 9, so y is counted under a(9).
The a(1) = 1 through a(9) = 5 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)     (7)        (8)       (9)
            (111)       (11111)  (222)   (3211)     (3311)    (333)
                                 (3111)  (1111111)  (221111)  (4221)
                                                              (222111)
                                                              (111111111)
		

Crossrefs

For median instead of mean we have A362558.
The complement is counted by A362560.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A264034 counts partitions by weighted sum.
A304818 = weighted sum of prime indices, row-sums of A359361.
A318283 = weighted sum of reversed prime indices, row-sums of A358136.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]

A363532 Number of integer partitions of n with weighted alternating sum 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 2, 0, 3, 3, 3, 5, 5, 10, 12, 7, 14, 25, 18, 22, 48, 48, 41, 67, 82, 89, 111, 140, 170, 220, 214, 264, 392, 386, 436, 623, 693, 756, 934, 1102, 1301, 1565, 1697, 2132, 2616, 2727, 3192, 4062, 4550, 5000, 6132, 7197, 8067, 9338, 10750, 12683
Offset: 0

Views

Author

Gus Wiseman, Jun 14 2023

Keywords

Comments

We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.

Examples

			The a(11) = 3 through a(15) = 12 partitions (A = 10):
  (33221)   (84)        (751)       (662)       (A5)
  (44111)   (6222)      (5332)      (4442)      (8322)
  (222221)  (7311)      (6421)      (5531)      (9411)
            (621111)    (532111)    (43331)     (722211)
            (51111111)  (42211111)  (54221)     (831111)
                                    (65111)     (3322221)
                                    (432221)    (3333111)
                                    (443111)    (4422111)
                                    (32222111)  (5511111)
                                    (33311111)  (22222221)
                                                (72111111)
                                                (6111111111)
		

Crossrefs

The unweighted version is A035363.
These partitions have ranks A363621.
The triangle for this rank statistic is A363623, reverse A363622.
The version for compositions is A363626.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],altwtsum[#]==0&]],{n,0,30}]

A363626 Number of integer compositions of n with weighted alternating sum 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 5, 7, 8, 14, 38, 64, 87, 174, 373, 649, 1069, 2051, 4091, 7453, 13276, 25260, 48990, 91378, 168890, 321661, 618323, 1169126, 2203649, 4211163, 8085240, 15421171, 29390131, 56382040, 108443047, 208077560, 399310778
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2023

Keywords

Comments

We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.

Examples

			The a(3) = 1 through a(10) = 14 compositions:
  (21)  (121)  .  (42)    (331)     (242)      (63)       (541)
                  (3111)  (1132)    (1331)     (153)      (2143)
                          (2221)    (11132)    (4122)     (3232)
                          (21121)   (12221)    (5211)     (4321)
                          (112111)  (23111)    (13122)    (15112)
                                    (121121)   (14211)    (31231)
                                    (1112111)  (411111)   (42121)
                                               (1311111)  (114112)
                                                          (212122)
                                                          (213211)
                                                          (311221)
                                                          (322111)
                                                          (3111121)
                                                          (21211111)
		

Crossrefs

The unweighted version is A138364, ranks A344619.
The version for partitions is A363532, ranks A363621.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],altwtsum[#]==0&]],{n,0,10}]

Extensions

Terms a(22) onward from Max Alekseyev, Sep 05 2023

A363619 Weighted alternating sum of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, -1, 3, -3, 4, 2, -2, -5, 5, 5, 6, -7, -4, -2, 7, 3, 8, 8, -6, -9, 9, -6, -3, -11, 4, 11, 10, 6, 11, 3, -8, -13, -5, -3, 12, -15, -10, -10, 13, 9, 14, 14, 7, -17, 15, 8, -4, 4, -12, 17, 16, -5, -7, -14, -14, -19, 17, -7, 18, -21, 10, -3, -9, 12, 19, 20
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8, so a(300) = 8.
		

Crossrefs

The non-alternating version is A304818, reverse A318283.
The unweighted version is A316524, reverse A344616.
The reverse version is A363620.
The triangle for this rank statistic is A363622, reverse A363623.
For partitions instead of multisets we have A363624, reverse A363625.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, zero-based A359678.
A359677 gives zero-based weighted sum of prime indices, reverse A359674.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[altwtsum[prix[n]],{n,100}]

A363620 Reverse-weighted alternating sum of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 2, 2, -1, 5, 3, 6, -2, 1, 2, 7, 1, 8, 4, 0, -3, 9, 1, 3, -4, 4, 5, 10, 2, 11, 3, -1, -5, 2, 3, 12, -6, -2, 0, 13, 3, 14, 6, 5, -7, 15, 4, 4, 0, -3, 7, 16, 0, 1, -1, -4, -8, 17, 2, 18, -9, 6, 3, 0, 4, 19, 8, -5, 1, 20, 2, 21, -10, 3, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with reverse-weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4, so a(300) = 4.
		

Crossrefs

The reverse non-alternating version is A304818, row-sums of A359361.
The non-alternating version is A318283, row-sums of A358136.
The unweighted version is A344616, reverse A316524.
The reverse version is A363619.
Positions of zeros are A363621.
The triangle for this rank statistic is A363623, reverse A363622.
For partitions instead of multisets we have A363625, reverse A363624.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Table[revaltwtsum[prix[n]],{n,100}]

A363621 Positive integers whose prime indices have reverse-weighted alternating sum 0.

Original entry on oeis.org

1, 6, 21, 40, 50, 54, 65, 132, 133, 154, 210, 224, 319, 340, 351, 360, 374, 392, 450, 481, 486, 507, 546, 598, 624, 644, 731, 825, 855, 969, 1007, 1029, 1054, 1144, 1210, 1254, 1320, 1364, 1386, 1403, 1408, 1520, 1558, 1653, 1750, 1785, 1827, 1836, 1890, 1960
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with reverse-weighted alternating sum 1*3 - 2*2 + 3*2 - 4*1 + 5*1 - 6*1 = 0, so 360 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     6: {1,2}
    21: {2,4}
    40: {1,1,1,3}
    50: {1,3,3}
    54: {1,2,2,2}
    65: {3,6}
   132: {1,1,2,5}
   133: {4,8}
   154: {1,4,5}
   210: {1,2,3,4}
   224: {1,1,1,1,1,4}
   319: {5,10}
   340: {1,1,3,7}
   351: {2,2,2,6}
   360: {1,1,1,2,2,3}
		

Crossrefs

The unweighted version is A000290.
Partitions of this type are counted by A363532.
Positions of zeros in A363620 and A363624, reverse A363619 and A363625.
Compositions of this type are counted by A363626.
A053632 counts compositions by weighted sum.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices.
A318283 gives weighted sum of reversed prime indices.
A320387 counts multisets by weighted sum.
A344616 gives reverse-alternating sum of prime indices.
A363623 counts partitions by reverse-weighted alternating sum.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Select[Range[1000],revaltwtsum[prix[#]]==0&]

A363624 Weighted alternating sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, -1, 3, 0, 4, 2, -2, 1, 5, 3, 6, 2, -1, -2, 7, 1, 8, 4, 0, 3, 9, -1, -3, 4, 4, 5, 10, 2, 11, 3, 1, 5, -2, -3, 12, 6, 2, 0, 13, 3, 14, 6, 5, 7, 15, 4, -4, 0, 3, 7, 16, 0, -1, 1, 4, 8, 17, -2, 18, 9, 6, -3, 0, 4, 19, 8, 5, 1, 20, 2, 21, 10, 3, 9, -3, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i - 1) * i * y_i.

Examples

			The partition with Heinz number 600 is (3,3,2,1,1,1), with weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 - 6*1 = -2, so a(600) = -2.
		

Crossrefs

The non-alternating version is A318283, reverse A304818.
The unweighted version is A344616, reverse A316524.
For multisets instead of partitions we have A363619.
Positions of zeros are A363621, counted by A363532.
The triangle for this rank statistic is A363622, reverse A363623.
The reverse version is A363625, for multisets A363620.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, reverse A007294.
A359677 gives zero-based weighted sum of prime indices, reverse A359674.
A363626 counts compositions with reverse-weighted alternating sum 0.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[altwtsum[Reverse[prix[n]]],{n,100}]

A363625 Reverse-weighted alternating sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 2, 2, 5, 5, 5, 6, 7, 4, 2, 7, 3, 8, 8, 6, 9, 9, 6, 3, 11, 4, 11, 10, 6, 11, 3, 8, 13, 5, 3, 12, 15, 10, 10, 13, 9, 14, 14, 7, 17, 15, 8, 4, 4, 12, 17, 16, 5, 7, 14, 14, 19, 17, 7, 18, 21, 10, 3, 9, 12, 19, 20, 16, 7, 20, 4, 21, 23, 5, 23
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) * i * y_{k-i+1}.

Examples

			The partition with Heinz number 600 is (3,3,2,1,1,1), so a(600) = -1*1 + 2*1 - 3*1 + 4*2 - 5*3 + 6*3 = 9.
		

Crossrefs

The non-alternating version is A304818, reverse A318283.
The unweighted version is A316524, reverse A344616.
For multisets instead of partitions we have A363620.
The triangle for this rank statistic is A363623, reverse A363622.
The reverse version is A363624, for multisets A363619.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, reverse A007294.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Table[revaltwtsum[Reverse[prix[n]]],{n,100}]

A362560 Number of integer partitions of n whose weighted sum is not divisible by n.

Original entry on oeis.org

0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
Offset: 1

Views

Author

Gus Wiseman, Apr 28 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.

Examples

			The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
  (11)  (21)  (22)    (32)    (33)      (43)
              (31)    (41)    (42)      (52)
              (211)   (221)   (51)      (61)
              (1111)  (311)   (321)     (322)
                      (2111)  (411)     (331)
                              (2211)    (421)
                              (21111)   (511)
                              (111111)  (2221)
                                        (4111)
                                        (22111)
                                        (31111)
                                        (211111)
		

Crossrefs

For median instead of mean we have A322439 aerated, complement A362558.
The complement is counted by A362559.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A264034 counts partitions by weighted sum.
A304818 = weighted sum of prime indices, row-sums of A359361.
A318283 = weighted sum of reversed prime indices, row-sums of A358136.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]
Showing 1-10 of 15 results. Next