cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A342725 Numbers that are palindromic in base i-1.

Original entry on oeis.org

0, 1, 13, 17, 189, 205, 257, 273, 3005, 3069, 3277, 3341, 4033, 4097, 4305, 4369, 48061, 48317, 49149, 49405, 52173, 52429, 53261, 53517, 64449, 64705, 65537, 65793, 68561, 68817, 69649, 69905, 768957, 769981, 773309, 774333, 785405, 786429, 789757, 790781, 834509
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Crossrefs

Similar sequences: A002113 (decimal), A006995 (binary), A014190 (base 3), A014192 (base 4), A029952 (base 5), A029953 (base 6), A029954 (base 7), A029803 (base 8), A029955 (base 9), A046807 (factorial base), A094202 (Zeckendorf), A331191 (dual Zeckendorf), A331891 (negabinary), A333423 (primorial base).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := PalindromeQ @ FromDigits[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; Select[Range[0, 10^4], q]

Formula

13 is a term since its base-(i-1) presentation is 100010001 which is palindromic.

A249155 Palindromic in bases 6 and 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 14, 80, 160, 301, 602, 693, 994, 1295, 1627, 1777, 2365, 2666, 5296, 5776, 6256, 17360, 34720, 51301, 52201, 105092, 155493, 209284, 587846, 735644, 7904800, 11495701, 80005507, 80469907, 83165017, 89731777, 90196177
Offset: 1

Views

Author

Ray Chandler, Oct 27 2014

Keywords

Comments

Intersection of A029953 and A029960.

Examples

			301 is a term since 301 = 1221 base 6 and 301 = 151 base 15.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; Select[Range[10^6] - 1, palQ[#, 6] && palQ[#, 15] &]
  • Python
    from gmpy2 import digits
    def palQ(n, b): # check if n is a palindrome in base b
        s = digits(n, b)
        return s == s[::-1]
    def palQgen(l, b): # generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1, l+1):
                for y in range(b**(x-1), b**x):
                    s = digits(y, b)
                    yield int(s+s[-2::-1], b)
                for y in range(b**(x-1), b**x):
                    s = digits(y, b)
                    yield int(s+s[::-1], b)
    A249155_list = [n for n in palQgen(8, 6) if palQ(n, 15)] # Chai Wah Wu, Nov 29 2014

A333423 Numbers that are palindromes in primorial base.

Original entry on oeis.org

0, 1, 3, 7, 9, 11, 31, 39, 47, 211, 217, 223, 229, 235, 243, 249, 255, 261, 267, 275, 281, 287, 293, 299, 2311, 2347, 2383, 2419, 2455, 2523, 2559, 2595, 2631, 2667, 2735, 2771, 2807, 2843, 2879, 30031, 30061, 30091, 30121, 30151, 30181, 30211, 30247, 30277, 30307
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			3 is a term since its representation in primorial base is 11 (1 * 2# + 1) which is a palindrome.
7 is a term since its representation in primorial base is 101 (1 * 3# + 0 * 2# + 1 = 6 + 1) which is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    max = 6; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Select[Range[0, nmax], PalindromeQ @ IntegerDigits[#, MixedRadix[bases]] &]

A256086 Non-palindromic balanced numbers in base 6.

Original entry on oeis.org

234, 276, 318, 326, 368, 410, 451, 493, 535, 543, 585, 627, 668, 710, 752, 760, 802, 844, 885, 927, 969, 977, 1019, 1061, 1102, 1144, 1186, 1308, 1344, 1380, 1416, 1452, 1488, 1530, 1566, 1602, 1638, 1674, 1710, 1730, 1752, 1766, 1788, 1802, 1824, 1838, 1860, 1874, 1896, 1910, 1932, 1952, 1974, 1988
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Since palindromes (A029953) are trivially balanced, they are excluded here.
This is the base-6 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 6);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=6,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&d!=Vecrev(d)

A046236 Cubes which are palindromes in base 6.

Original entry on oeis.org

0, 1, 343, 50653, 10218313, 2181825073, 470366406433, 101566487155393, 21937185733709953, 4738389801656378113, 1023490673757369487873, 221073930689208859487233
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Note that '7'^3 = '1331{6}' = '363{10}' = '292{11}' is a palindromic street !

Crossrefs

Intersection of A029953 and A000578.
Cf. A046235.

Programs

  • Mathematica
    pal6Q[n_]:=Module[{idn6=IntegerDigits[n,6]},idn6==Reverse[idn6]]; Select[ Range[ 0,6047*10^4]^3,pal6Q] (* Harvey P. Dale, Jun 01 2022 *)

Formula

a(n) = A046235(n)^3. - Andrew Howroyd, Aug 10 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 10 2024

A260184 Numbers n written in base 10 that are palindromic in exactly three bases b, 2 <= b <= 10 and not simultaneously bases 2, 4 and 8.

Original entry on oeis.org

9, 10, 21, 40, 55, 80, 85, 100, 130, 154, 164, 178, 191, 203, 235, 242, 255, 257, 273, 282, 292, 300, 328, 400, 455, 585, 656, 819, 910, 2709, 6643, 8200, 14762, 32152, 53235, 74647, 428585, 532900, 1181729, 1405397, 4210945, 5259525, 27711772, 719848917, 43253138565
Offset: 1

Views

Author

Keywords

Examples

			273 is in the sequence because 100010001_2 = 101010_3 = 10101_4 = 2043_5 = 1133_6 = 540_7 = 421_8 = 333_9 = 273_10 and three of the bases, namely 2, 4 & 9, yield palindromes.
		

Crossrefs

Programs

  • Mathematica
    (* see A214425 and set all terms as lst, then *)
    gQ[n_] := Count[ palQ[n,#] & /@ {2, 4, 8}, True];
    Select[ lst, gQ[#] != 3 &]

Formula

The intersection of A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955 & A002113 which yields just three members, not simultaneously bases 2, 4 and 8.

A043265 Sum of the digits of the n-th base 6 palindrome.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 2, 4, 6, 8, 10, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11, 8, 9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 15, 2, 4, 6, 8, 10, 12, 4, 6, 8, 10, 12, 14, 6, 8, 10, 12, 14, 16, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 2, 3, 4
Offset: 1

Views

Author

Keywords

Crossrefs

A029953 (base 6 palindromes)

Programs

  • Mathematica
    Total/@Select[IntegerDigits[#,6]&/@Range[0,2000],#==Reverse[#]&] (* Harvey P. Dale, Apr 18 2020 *)
Previous Showing 21-27 of 27 results.