cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A256686 Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-9,-8].

Original entry on oeis.org

8, 6, 9, 5, 7, 6, 4, 1, 6, 3, 8, 1, 6, 4, 0, 1, 2, 6, 6, 4, 8, 8, 7, 7, 6, 1, 6, 0, 8, 0, 4, 6, 4, 5, 8, 2, 0, 2, 7, 2, 4, 3, 8, 0, 8, 4, 9, 6, 6, 7, 2, 8, 7, 8, 3, 2, 6, 6, 5, 7, 8, 8, 6, 7, 4, 7, 7, 7, 3, 8, 7, 1, 4, 2, 7, 7, 1, 8, 5, 9, 6, 1, 5, 8, 5, 7, 0, 0, 9, 5, 9, 3, 1, 8, 6, 5, 8, 6, 8, 8, 9, 6, 3, 5
Offset: 1

Views

Author

Jean-François Alcover, Apr 08 2015

Keywords

Examples

			Gamma(-8.695764163816401266488776160804645820272438084966728783...)
= -0.00002092529044652666875369728468060738117860083247673665...
		

Crossrefs

Programs

  • Mathematica
    digits = 104; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -17/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First

Formula

Solution to PolyGamma(x) = 0 in the interval [-9,-8].

A344964 Decimal expansion of the sum of the reciprocals of the squares of the zeros of the digamma function.

Original entry on oeis.org

5, 2, 6, 7, 9, 8, 0, 1, 2, 4, 3, 5, 2, 3, 9, 7, 9, 8, 3, 7, 3, 5, 6, 2, 1, 6, 3, 6, 2, 9, 3, 3, 1, 9, 7, 9, 4, 3, 1, 6, 2, 6, 6, 8, 4, 3, 8, 7, 0, 0, 2, 5, 0, 5, 6, 3, 5, 7, 5, 0, 8, 0, 2, 6, 1, 1, 2, 2, 8, 8, 2, 0, 4, 9, 0, 5, 3, 5, 9, 2, 9, 1, 1, 6, 2, 1, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^2, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			5.26798012435239798373562163629331979431626684387002...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/2 + EulerGamma^2, 10, 100][[1]]

Formula

Equals Pi^2/2 + gamma^2 = A102753 + A155969, where gamma is Euler's constant (A001620).

A344965 Decimal expansion of the sum of the reciprocals of the cubes of the zeros of the digamma function (negated).

Original entry on oeis.org

7, 8, 4, 8, 9, 8, 8, 2, 6, 2, 8, 0, 4, 5, 0, 6, 3, 0, 4, 8, 9, 8, 8, 3, 7, 3, 2, 7, 1, 6, 0, 5, 5, 0, 6, 7, 1, 1, 0, 1, 6, 4, 1, 2, 7, 9, 1, 1, 6, 3, 8, 0, 3, 2, 9, 2, 3, 2, 5, 3, 0, 0, 3, 4, 9, 8, 6, 4, 6, 7, 5, 0, 5, 8, 0, 6, 0, 1, 0, 3, 4, 4, 2, 7, 6, 1, 6
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^3, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			-7.84898826280450630489883732716055067110164127911638...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma*Pi^2/2 + 4*Zeta[3]  + EulerGamma^3, 10, 100][[1]]

Formula

Equals -gamma*Pi^2/2 - 4*zeta(3) - gamma^3, where gamma is Euler's constant (A001620).

A344966 Decimal expansion of the sum of the reciprocals of the fourth powers of the zeros of the digamma function.

Original entry on oeis.org

1, 5, 9, 0, 1, 8, 4, 7, 0, 3, 3, 2, 2, 3, 4, 9, 1, 5, 6, 9, 7, 2, 0, 8, 4, 5, 5, 7, 3, 5, 8, 4, 2, 5, 1, 7, 6, 5, 1, 9, 2, 5, 6, 6, 7, 2, 6, 4, 3, 4, 0, 2, 0, 4, 1, 0, 5, 7, 5, 7, 1, 6, 7, 9, 6, 5, 2, 1, 0, 5, 3, 8, 3, 8, 8, 6, 4, 6, 8, 5, 7, 8, 8, 9, 3, 2, 4
Offset: 2

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^4, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			15.90184703322349156972084557358425176519256672643402...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4/9 + 2*EulerGamma^2*Pi^2/3 + 4*EulerGamma*Zeta[3] + EulerGamma^4, 10, 100][[1]]

Formula

Equals Pi^4/9 + 2*gamma^2*Pi^2/3 + 4*gamma*zeta(3) + gamma^4, where gamma is Euler's constant (A001620).

A344967 Decimal expansion of Sum_{k>=0} 1/(x_k^2 - 1), where x_k is the k-th zero of the digamma function.

Original entry on oeis.org

7, 1, 3, 4, 9, 4, 7, 2, 2, 1, 0, 9, 9, 6, 8, 1, 6, 7, 6, 9, 9, 3, 3, 5, 9, 4, 4, 4, 1, 3, 3, 3, 5, 6, 3, 6, 6, 5, 5, 3, 1, 8, 9, 3, 9, 5, 8, 5, 1, 2, 9, 5, 0, 5, 9, 4, 5, 8, 8, 7, 0, 1, 6, 5, 8, 1, 0, 4, 7, 2, 4, 0, 7, 9, 2, 1, 6, 8, 6, 8, 6, 0, 6, 1, 8, 7, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The zeros of the digamma function, i.e., the roots of psi(x) = 0 are x_0 = 1.461632... (A030169), the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			0.71349472210996816769933594441333563665531893958512...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/(12*EulerGamma) + EulerGamma/2 - 1, 10, 100][[1]]

Formula

Equals Pi^2/(12*gamma) + gamma/2 - 1, where gamma is Euler's constant (A001620).

A344968 Decimal expansion of Sum_{k>=0} 1/(x_k^2 - x_k), where x_k is the k-th zero of the digamma function.

Original entry on oeis.org

3, 4, 2, 6, 9, 8, 9, 4, 4, 4, 2, 1, 9, 9, 3, 6, 3, 3, 5, 3, 9, 8, 6, 7, 1, 8, 8, 8, 8, 2, 6, 6, 7, 1, 2, 7, 3, 3, 1, 0, 6, 3, 7, 8, 7, 9, 1, 7, 0, 2, 5, 9, 0, 1, 1, 8, 9, 1, 7, 7, 4, 0, 3, 3, 1, 6, 2, 0, 9, 4, 4, 8, 1, 5, 8, 4, 3, 3, 7, 3, 7, 2, 1, 2, 3, 7, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The zeros of the digamma function, i.e., the roots of psi(x) = 0 are x_0 = 1.461632... (A030169), the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			3.42698944421993633539867188882667127331063787917025...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/(6*EulerGamma) + EulerGamma, 10, 100][[1]]

Formula

Equals Pi^2/(6*gamma) + gamma, where gamma is Euler's constant (A001620).

A374856 a(n) is the least integer m such that the distance of x_m from its nearest integer is less than 1/n, where x_m is the m-th extrema of Gamma(x).

Original entry on oeis.org

0, 1, 6, 23, 76, 231, 681, 1968, 5605, 15817, 44324, 123573, 343157, 950000, 2623530, 7230746, 19896140, 54671729, 150058028, 411465352, 1127315946, 3086355718, 8444524052, 23092305853, 63117665557, 172444844373, 470961842866, 1285804853026, 3509404275438, 9575773901601
Offset: 1

Views

Author

Jwalin Bhatt, Sep 16 2024

Keywords

Comments

a(n) approximately equals exp(Pi/tan(Pi/n)).

Examples

			 -1 + 1.46163214496836 < 1/1
  1 - 0.50408300826446 < 1/2
  6 - 5.66716244155689 < 1/3
 23 - 22.7502429843061 < 1/4
 76 - 75.8003723367285 < 1/5
231 - 230.833395691244 < 1/6
		

Crossrefs

Programs

  • Python
    from gmpy2 import mpq, get_context, exp, digamma, sign, is_nan, RoundUp, RoundDown
    def apply_on_interval(func, interval):
        ctx.round = RoundUp
        rounded_up = func(interval[0])
        ctx.round = RoundDown
        rounded_down = func(interval[1])
        return rounded_down, rounded_up
    def digamma_sign_near_int(i, f):
        while True:
            d, u = apply_on_interval(lambda x: digamma(i + 1/x), [f, f])
            if not(is_nan(d)) and not(is_nan(u)) and (sign(d) == sign(u)):  return sign(d)
            ctx.precision += 1
    def find_next_zero_crossing(f, i, growth_factor):  # Bisect.
        lo, hi = int(i * const_e), int(i * growth_factor)
        while lo - 1 != hi:
            if digamma_sign_near_int(mid := (hi + lo) // 2, f) == -1:  lo = mid
            else:  hi = mid
        return hi
    def generate_sequence(n):
        seq, frac_denoms = [0, 1, 6], (mpq(str(i)) for i in range(4, n + 1))
        for f in frac_denoms:  seq.append(-find_next_zero_crossing(f, -seq[-1], seq[-1] / seq[-2]))
        return seq
    const_e, ctx = exp(1), get_context()
    ctx.precision = 2
    A374856 = generate_sequence(30)

Formula

A385170(a(n)) = n.

A030170 Let c be the point at which Gamma(x), x>0, is minimized; sequence gives continued fraction for c.

Original entry on oeis.org

1, 2, 6, 63, 135, 1, 1, 1, 1, 4, 1, 38, 9, 2, 5, 734, 6, 4, 1, 1, 2, 16, 1, 1, 1, 2, 1, 5, 3, 1, 2, 2478, 1, 1, 1, 3, 8, 1, 1, 7, 1, 1, 1, 64, 29, 3, 10, 2, 5, 1, 1, 2, 61, 1, 39, 1, 5, 1, 1, 2, 1, 8, 1, 16, 12, 3, 1, 32, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030169.

Programs

  • Mathematica
    ContinuedFraction[ x /. FindRoot[ Gamma'[x] == 0, {x, 1}, WorkingPrecision -> 100], 69] (* Jean-François Alcover, Oct 29 2012 *)
  • PARI
    contfrac(solve(x=1, 2, psi(x))) \\ Michel Marcus, Oct 18 2017

A096188 Engel expansion of real number x such that y = Gamma(x) is a minimum.

Original entry on oeis.org

1, 3, 3, 7, 13, 14, 14, 27, 27, 46, 99, 549, 913, 2637, 3830, 3929, 15500, 55253, 85854, 246166, 1052057, 2490138, 2521393, 16086534, 29730193, 38774343, 84328391, 317160458, 371478595, 600277187, 811735945, 849656112, 139143919171
Offset: 1

Views

Author

Gerald McGarvey, Jul 25 2004

Keywords

Comments

Gamma(x) has a minimum at x = 1.46163214496836234126265954232572132846819620400644... (A030169).

Crossrefs

Cf. A030169.

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1 &, Floor[ A ]], First@Transpose @ NestList[ {Ceiling[ 1/Expand[ #[[ 1 ]] #[[ 2 ]] - 1 ]], Expand[ #[[ 1 ]] #[[ 2 ]] - 1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1 ]]; EngelExp[ FindMinimum[ Gamma[x], {x, 1, 4}, WorkingPrecision -> 2^9][[2, 1, 2]], 32] (* Robert G. Wilson v, Jul 28 2004 *)

Extensions

Edited and extended by Robert G. Wilson v, Jul 28 2004

A365797 Decimal expansion of smallest positive number x such that Gamma(x) = 2.

Original entry on oeis.org

4, 4, 2, 8, 7, 7, 3, 9, 6, 4, 8, 4, 7, 2, 7, 4, 3, 7, 4, 5, 2, 0, 3, 2, 5, 1, 6, 5, 2, 0, 6, 0, 5, 6, 7, 1, 7, 1, 0, 3, 6, 4, 5, 3, 8, 0, 6, 6, 3, 6, 6, 4, 0, 2, 9, 9, 1, 2, 3, 0, 7, 1, 9, 8, 9, 5, 8, 5, 2, 4, 8, 2, 2, 8, 4, 1, 7, 4, 0, 8, 0, 4, 0, 7, 7, 0, 0, 9, 3, 7, 7, 2, 9, 8, 4, 4, 8, 2, 2, 1, 0, 8, 3, 6, 3, 4
Offset: 0

Views

Author

David Ulgenes, Sep 19 2023

Keywords

Comments

Second branch (i.e., the first after the principal branch) of the inverse gamma function Gamma(y) = x at x=2. See for instance Uchiyama.
Since 1 - x = 0.55712260351... (approximately equal to A249649), we can obtain the interesting approximation Gamma(zeta(2) - zeta(3)) ≈ 2.000001... - David Ulgenes, Feb 19 2024
x is the least positive real number where 1+Gamma(1+Gamma(1+Gamma...(x)...)) converges; it converges to 3. - Colin Linzer, Nov 25 2024

Examples

			0.4428773964847274374520325165206056717103645380663664...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    with(RootFinding):
    NextZero(x -> (x - 1)! - 2, 0);
  • Mathematica
    FindRoot[-2 + (-1 + x)! == 0, {x, 0, 1}, WorkingPrecision -> 15]
  • PARI
    solve(x=0.1, 1, gamma(x)-2) \\ Michel Marcus, Sep 19 2023

Formula

Equals ((((1/2)!/2)!/2)!/2)!/2...
Proof: Since y = y! / x we substitute the expression into itself to obtain an iterative scheme for the inverse gamma function.
Equals (1/(2*Pi))*Integral_{x=-oo..oo} log((2-Gamma(i*x))/(2-Gamma(1+i*x))) dx. Proof: Follows from writing the inverse gamma function using the Lagrange inversion theorem together with Cauchy's formula for differentiation. - David Ulgenes, Feb 11 2024
Previous Showing 11-20 of 20 results.