cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A256686 Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-9,-8].

Original entry on oeis.org

8, 6, 9, 5, 7, 6, 4, 1, 6, 3, 8, 1, 6, 4, 0, 1, 2, 6, 6, 4, 8, 8, 7, 7, 6, 1, 6, 0, 8, 0, 4, 6, 4, 5, 8, 2, 0, 2, 7, 2, 4, 3, 8, 0, 8, 4, 9, 6, 6, 7, 2, 8, 7, 8, 3, 2, 6, 6, 5, 7, 8, 8, 6, 7, 4, 7, 7, 7, 3, 8, 7, 1, 4, 2, 7, 7, 1, 8, 5, 9, 6, 1, 5, 8, 5, 7, 0, 0, 9, 5, 9, 3, 1, 8, 6, 5, 8, 6, 8, 8, 9, 6, 3, 5
Offset: 1

Views

Author

Jean-François Alcover, Apr 08 2015

Keywords

Examples

			Gamma(-8.695764163816401266488776160804645820272438084966728783...)
= -0.00002092529044652666875369728468060738117860083247673665...
		

Crossrefs

Programs

  • Mathematica
    digits = 104; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -17/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First

Formula

Solution to PolyGamma(x) = 0 in the interval [-9,-8].

A172081 Decimal expansion of the local minimum F(x) of the Fibonacci Function at x = A171909.

Original entry on oeis.org

8, 9, 6, 9, 4, 6, 3, 8, 7, 4, 2, 4, 6, 0, 6, 1, 7, 2, 9, 1, 2, 6, 0, 0, 3, 7, 1, 0, 6, 8, 7, 6, 5, 4, 4, 4, 1, 7, 9, 9, 9, 3, 7, 5, 7, 4, 2, 0, 9, 1, 8, 0, 5, 6, 1, 6, 5, 8, 2, 7, 4, 6, 4, 9, 6, 1, 0, 3, 8, 1, 4, 1, 5, 4, 0, 6, 2, 4, 2, 0, 8, 2, 2, 4, 1, 3, 4, 6, 3, 5, 6, 7, 1, 9, 7, 5, 3, 1, 4, 4, 4, 7, 4, 0
Offset: 0

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 25 2010

Keywords

Comments

Define the Fibonacci Function F(x) and its derivative as in A171909.
The derivative is dF/dx = (phi^x * log(phi) - cos(Pi*x)*log(phi)/phi^x + Pi*sin(Pi*x)/phi^x)/sqrt(5).
Set dF(x)/dx = 0 to find the local minimum.

Examples

			F(1.67668837258...) = 0.896946387424606172912600371068765...
		

Crossrefs

Programs

  • Maple
    p := (1+sqrt(5))/2 ; F := (p^x - cos(Pi*x)/p^x )/sqrt(5);
    Fpr := diff(F,x) ; Fpr2 := diff(Fpr,x) ;
    Digits := 80 ; x0 := 1.67 ;
    for n from 1 to 10 do
    x0 := evalf(x0-subs(x=x0,Fpr)/subs(x=x0,Fpr2)) ;
    print( evalf(subs(x=x0,F))) ;
    end do : # R. J. Mathar, Feb 02 2010
  • Mathematica
    digits = 104; F[x_] := (GoldenRatio^x - Cos[Pi*x]/GoldenRatio^x)/Sqrt[5]; x0 = x /. FindRoot[F'[x], {x, 2}, WorkingPrecision -> digits+1]; RealDigits[F[x0], 10, digits][[1]] (* Jean-François Alcover, Jan 28 2014 *)

Extensions

Edited, offset and leading zero normalized by R. J. Mathar, Feb 02 2010

A030172 Let c be the point at which Gamma(x), x>0, is minimized; sequence gives continued fraction for Gamma(c).

Original entry on oeis.org

0, 1, 7, 1, 2, 1, 6, 1, 1, 1, 1, 6, 1, 4, 1, 1, 10, 3, 1, 10, 3, 4, 2, 1, 1, 2, 1, 6, 1, 1, 11, 1, 1, 2, 1, 2, 1, 1, 1, 3, 35, 3, 5, 2025, 1, 1, 2, 6, 3, 4, 16, 1, 1, 2, 2, 3, 1, 2, 1, 1, 3, 1, 8, 4, 13, 1, 8, 10, 3, 14, 1, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030171.

Programs

  • Mathematica
    ContinuedFraction[ Gamma[x] /. FindRoot[Gamma'[x] == 0, {x, 1}, WorkingPrecision -> 100], 72] (* Jean-François Alcover, Oct 29 2012 *)
  • PARI
    contfrac(gamma(solve(x=1, 2, psi(x)))) \\ G. C. Greubel, Dec 28 2019

A334850 Decimal expansion of the maximal curvature of y = Gamma(x), for x>0.

Original entry on oeis.org

7, 7, 6, 4, 2, 3, 7, 1, 3, 7, 1, 4, 8, 3, 2, 4, 2, 5, 9, 8, 5, 6, 9, 8, 2, 0, 6, 2, 6, 0, 0, 9, 0, 3, 6, 4, 2, 3, 6, 4, 3, 2, 1, 7, 3, 7, 9, 8, 2, 7, 1, 0, 6, 7, 5, 9, 1, 2, 0, 1, 9, 9, 6, 9, 9, 5, 0, 7, 3, 6, 6, 0, 0, 8, 8, 4, 8, 1, 0, 5, 1, 1, 4, 3, 7, 8, 0, 2, 2, 1, 6, 4, 1, 3, 6, 2, 3, 9, 6
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2020

Keywords

Comments

Each branch of y = Gamma(x) has a point of maximal curvature (MC), at which the osculating circle has minimal radius (R). The branch in Quadrant I has MC at (x, Gamma(x)), where x = 0.9757... and R = 0.77642... Details for 4 branches (shown by 1st Mathematica program):
For the branch -3 < x < -2:
MC at x=-2.6209004043183225054792567933147...
R = 0.1025411250345462193237149178953328755...
For the branch -2 < x < -1:
MC at x=-1.57452893040224357315540638154037...
R = 0.043652981140784797188517226949156690045...
For the branch -1 < x < 0:
MC at x=-0.50414409519766396393374935693160...
R = 0.0315571147317663900987190484592293666...
For the branch 0 < x:
MC at x=0.97574729311153379112462151102264...
R = 0.7764237137148324259856982062600903642...

Crossrefs

Cf. A030171.

Programs

  • Mathematica
    (* FIRST program *)
    g[x_] := Gamma[x]; p[k_, x_] := PolyGamma[k, x]
    solns = Map[#[[1]][[1]] &, GatherBy[Map[{#[[2]], Rationalize[#[[2]], 10^-30]} &,
        Select[Table[{nn, #, Accuracy[#]} &[x /. FindRoot[
             0 == (2 g[x]^2 p[0, x]^5 + 3 p[0, x] p[1, x] (-1 + g[x]^2 p[1, x]) +
                p[0, x]^3 (-1 + 3 g[x]^2 p[1, x]) - (1 +  g[x]^2 p[0, x]^2) p[2, x]), {x, nn},
             WorkingPrecision -> 100]], {nn, -2.8, 2.5, .101}], #[[3]] > 40 &]], #[[2]] &]]
    {coords, rads} = Chop[Transpose[Map[{{(-p[0, x] + x p[0, x]^2 - g[x]^2 p[0, x]^3 +
               x p[1, x])/(p[0, x]^2 + p[1, x]), (1 + g[x]^2 (2 p[0, x]^2 + p[1, x]))/(g[x] (p[0, x]^2 + p[1, x]))}, Sqrt[(1 + g[x]^2 p[0, x]^2)^3/(g[x]^2 (p[0, x]^2 + p[1, x])^2)]} /. x -> # &, solns]]]
    Show[Plot[g[x], {x, -3, 2}], Map[{Graphics[Circle[coords[[#]], rads[[#]]]],
        Graphics[Point[coords[[#]]]]} &, Range[Length[rads]]],
    AspectRatio -> Automatic, PlotRange -> {-4, 4}, ImageSize -> 600]
    (* Peter J. C. Moses, Jun 17 2020 *)
    (* Graphics output:: 4 osculating circles;
    Numerical output: first 4 numbers are x-coordinates of touchpoints of osculating circles with graph of gamma function; next 8 numbers are in pairs: (x,y) for the centers of the four circles; last 4 numbers are radii of the 4 circles *)
    (* SECOND program: animation of osculating circle *)
    Animate[Show[cent = {(-PolyGamma[0, x] + x PolyGamma[0, x]^2 -
           Gamma[x]^2 PolyGamma[0, x]^3 + x PolyGamma[1, x])/(PolyGamma[0, x]^2 + PolyGamma[1, x]), (1 + Gamma[x]^2 (2 PolyGamma[0, x]^2 + PolyGamma[1, x]))/(Gamma[x] (PolyGamma[0, x]^2 + PolyGamma[1, x]))}; rad = Sqrt[(1 +
            Gamma[x]^2 PolyGamma[0, x]^2)^3/(Gamma[x]^2 (PolyGamma[0, x]^2 + PolyGamma[1, x])^2)]; Plot[Gamma[x], {x, 0, 4}],
      Graphics[{PointSize[Large], Point[{x, Gamma[x]}]}],
      Graphics[{PointSize[Large], Point[cent]}],
      Graphics[Circle[cent, rad]], AxesOrigin -> {0, 0},
      PlotRange -> {{0, 4}, {0, 6}}, ImageSize -> 400,
      AspectRatio -> Automatic], {x, 0.4, 3.5}, AnimationRunning -> True]
    (* Peter J. C. Moses, Jun 18 2020 *)

A362810 Define G(n, k) to be the n-th derivative of Gamma(x) at k. a(n)=floor(min(G(2n, x))), where min(f) is the local minimum of f in [0,oo).

Original entry on oeis.org

0, 0, 1, 6, 30, 173, 1138, 8386, 67951, 596745, 5618916, 56249658, 594648335, 6602123630, 76631632344, 926329705808, 11623455427764, 150970962492188, 2024773236657401, 27980260971851306, 397645587914766071, 5801999753304428181, 86784442260270596447, 1328924296505789704631, 20807559990139289975657, 332753116291423840918784
Offset: 0

Views

Author

Jodi Spitz, May 04 2023

Keywords

Comments

Appears to grow factorially (superexponentially).
Conjecture: limit_{n->oo} log(a(n)) / log(n!) < 1. - Vaclav Kotesovec, Nov 17 2023

Examples

			a(5) = 173 since the local minimum in [0,oo) of the 10th derivative of Gamma(x) is 173.195...
		

Crossrefs

Cf. A030171.

Programs

  • Mathematica
    Join[{0}, Floor[Table[d = Simplify[D[Gamma[x], {x, 2 n}]]; d /. FindRoot[D[d, x] == 0, {x, n/2}, WorkingPrecision -> 50], {n, 1, 10}]]] (* Vaclav Kotesovec, Nov 17 2023 *)

Extensions

a(7)-a(25) from Vaclav Kotesovec, Nov 18 2023

A365797 Decimal expansion of smallest positive number x such that Gamma(x) = 2.

Original entry on oeis.org

4, 4, 2, 8, 7, 7, 3, 9, 6, 4, 8, 4, 7, 2, 7, 4, 3, 7, 4, 5, 2, 0, 3, 2, 5, 1, 6, 5, 2, 0, 6, 0, 5, 6, 7, 1, 7, 1, 0, 3, 6, 4, 5, 3, 8, 0, 6, 6, 3, 6, 6, 4, 0, 2, 9, 9, 1, 2, 3, 0, 7, 1, 9, 8, 9, 5, 8, 5, 2, 4, 8, 2, 2, 8, 4, 1, 7, 4, 0, 8, 0, 4, 0, 7, 7, 0, 0, 9, 3, 7, 7, 2, 9, 8, 4, 4, 8, 2, 2, 1, 0, 8, 3, 6, 3, 4
Offset: 0

Views

Author

David Ulgenes, Sep 19 2023

Keywords

Comments

Second branch (i.e., the first after the principal branch) of the inverse gamma function Gamma(y) = x at x=2. See for instance Uchiyama.
Since 1 - x = 0.55712260351... (approximately equal to A249649), we can obtain the interesting approximation Gamma(zeta(2) - zeta(3)) ≈ 2.000001... - David Ulgenes, Feb 19 2024
x is the least positive real number where 1+Gamma(1+Gamma(1+Gamma...(x)...)) converges; it converges to 3. - Colin Linzer, Nov 25 2024

Examples

			0.4428773964847274374520325165206056717103645380663664...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    with(RootFinding):
    NextZero(x -> (x - 1)! - 2, 0);
  • Mathematica
    FindRoot[-2 + (-1 + x)! == 0, {x, 0, 1}, WorkingPrecision -> 15]
  • PARI
    solve(x=0.1, 1, gamma(x)-2) \\ Michel Marcus, Sep 19 2023

Formula

Equals ((((1/2)!/2)!/2)!/2)!/2...
Proof: Since y = y! / x we substitute the expression into itself to obtain an iterative scheme for the inverse gamma function.
Equals (1/(2*Pi))*Integral_{x=-oo..oo} log((2-Gamma(i*x))/(2-Gamma(1+i*x))) dx. Proof: Follows from writing the inverse gamma function using the Lagrange inversion theorem together with Cauchy's formula for differentiation. - David Ulgenes, Feb 11 2024
Previous Showing 11-16 of 16 results.