cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A343536 Positive numbers k such that the decimal expansion of k^2 appears in the concatenation of the first k positive integers.

Original entry on oeis.org

1, 428, 573, 725, 727, 738, 846, 7810, 8093, 28023, 36354, 36365, 36464, 63636, 254544, 277851, 297422, 326734, 673267, 673368, 2889810, 4545454, 4545465, 5454547, 5454646, 24275425, 29411775, 47058823, 52941178, 94117748, 146407310, 263157795, 267735365, 285714186
Offset: 1

Views

Author

John R Phelan, Apr 18 2021

Keywords

Comments

A030467 is a subsequence. - Chai Wah Wu, Jun 07 2021

Examples

			428^2 = 183184, which appears in the concatenation of the first 428 positive integers at 183,184, i.e., (183184), so 428 is a term.
725^2 = 525625, which appears in the concatenation of the first 725 positive integers at 255,256,257, i.e., 25(525625)7, so 725 is a term.
		

Crossrefs

Programs

  • Java
    public class Oeis2 {
        public static void main(String[] args) {
            StringBuilder str = new StringBuilder();
            long n = 1;
            while (true) {
                str.append(n);
                if (str.indexOf(String.valueOf(n * n)) >= 0) {
                    System.out.print(n + ", ");
                }
                n++;
            }
        }
    }
    
  • Mathematica
    Select[Range@1000,StringContainsQ[""<>ToString/@Range@#,ToString[#^2]]&] (* Giorgos Kalogeropoulos, Apr 24 2021 *)
    Select[Range[68*10^4],SequenceCount[Flatten[IntegerDigits/@Range[#]],IntegerDigits[#^2]]>0&] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    f(n) = my(s=""); for(k=1, n, s=Str(s, k)); s; \\ from A007908
    isok(k) = #strsplit(f(k), Str(k^2)) > 1; \\ Michel Marcus, May 02 2021
    
  • Python
    A343536_list, k, s = [], 1, '1'
    while k < 10**6:
        if str(k**2) in s:
            A343536_list.append(k)
        k += 1
        s += str(k) # Chai Wah Wu, Jun 06 2021

Extensions

More terms from Jinyuan Wang, Apr 30 2021

A244289 Numbers n such that floor( n^(3/2) ) is a concatenation of two successive numbers.

Original entry on oeis.org

20, 120, 132, 325, 2213, 4544, 5911, 7071, 7889, 8046, 8297, 9819, 59658, 60772, 64002, 71483, 80717, 95846, 101555, 104195, 109579, 113393, 119894, 130485, 142010, 152556, 152829, 159994, 166038, 168012, 191190, 193622, 201631, 205929, 1098933, 1106171
Offset: 1

Views

Author

Michel Lagneau, Jun 27 2014

Keywords

Examples

			132 is in the sequence because floor(132^(3/2)) = floor(1516.5645...) = 1516 is the concatenation of 15 and 16.
		

Crossrefs

Cf. A030467.

Programs

  • Mathematica
    lst={};Do[If[EvenQ[y=Length[x=IntegerDigits[Floor[n^1.5]]]]&&Differences[FromDigits/@Partition[x,y/2]]=={1},AppendTo[lst,n]],{n,5*10^4}];lst
Previous Showing 21-22 of 22 results.