A030341
Triangle T(n,k): write n in base 3, reverse order of digits.
Original entry on oeis.org
0, 1, 2, 0, 1, 1, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 0, 2, 2, 1, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1
Offset: 0
Triangle begins :
0
1
2
0, 1
1, 1
2, 1
0, 2
1, 2
2, 2
0, 0, 1
1, 0, 1
2, 0, 1
0, 1, 1
1, 1, 1
2, 1, 1 ...
-
a030341 n k = a030341_tabf !! n !! k
a030341_row n = a030341_tabf !! n
a030341_tabf = iterate succ [0] where
succ [] = [1]
succ (2:ts) = 0 : succ ts
succ (t:ts) = (t + 1) : ts
-- Reinhard Zumkeller, Feb 21 2013
-
A030341_row := n -> op(convert(n, base, 3)):
seq(A030341_row(n), n=0..32); # Peter Luschny, Nov 28 2017
-
Flatten[Table[Reverse[IntegerDigits[n,3]],{n,0,40}]] (* Harvey P. Dale, Oct 20 2014 *)
-
A030341(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\3^k%3 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013
A031298
Triangle T(n,k): write n in base 10, reverse order of digits.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 0
Offset: 0
-
a031298 n k = a031298_tabf !! n !! k
a031298_row n = a031298_tabf !! n
a031298_tabf = iterate succ [0] where
succ [] = [1]
succ (9:ds) = 0 : succ ds
succ (d:ds) = (d + 1) : ds
-- Reinhard Zumkeller, Jul 04 2012
-
Table[Reverse[IntegerDigits[n]],{n,0,50}]//Flatten (* Harvey P. Dale, Mar 07 2023 *)
-
T(n,k)=n\10^(k-1)%10 \\ M. F. Hasler, Jul 21 2013
A030567
Triangle T(n,k): Write n in base 6 and reverse order of digits to get row n.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
Offset: 0
See
A030548 for a quite complete list of crossreferences.
-
Flatten[Table[Reverse[IntegerDigits[n,6]],{n,0,50}]] (* Harvey P. Dale, Sep 27 2015 *)
-
A030567(n,k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013
A053829
Sum of digits of (n written in base 8).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 4, 5, 6, 7, 8, 9, 10, 11, 5, 6, 7, 8, 9, 10, 11, 12, 6, 7, 8, 9, 10, 11, 12, 13, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 4, 5, 6, 7, 8, 9, 10
Offset: 0
a(20)=2+4=6 because 20 is written as 24 base 8.
From _Omar E. Pol_, Feb 21 2010: (Start)
It appears that this can be written as a triangle (See the conjecture in the entry A000120):
0,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,8,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,4,5,6,7,8,9,10,11,5,6,7,8,9,10,11,12,6,7,8,9,10,11,12,13,7,8,9,10,11,12,13,14,
1,2,3,4,5,6,7,8,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,4,5,6,7,8,9,10...
where the rows converge to A173528. (End)
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
- Robert Walker, Self Similar Sloth Canon Number Sequences
- Eric Weisstein's World of Mathematics, Digit Sum.
- Eric Weisstein's World of Mathematics, Octal.
-
a053829 n = q 0 $ divMod n 8 where
q r (0, d) = r + d
q r (m, d) = q (r + d) $ divMod m 8
-- Reinhard Zumkeller, May 15 2011
-
Table[Plus @@ IntegerDigits[n, 8], {n, 0, 95}] (* or *)
Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 7}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
-
a(n)=if(n<1,0,if(n%8,a(n-1)+1,a(n/8)))
-
a(n) = sumdigits(n, 8); \\ Michel Marcus, Jul 10 2022
-
def A053829(n): return sum(int(d) for d in oct(n)[2:]) # Chai Wah Wu, Jul 09 2022
A031235
Triangle T(n,k): write n in base 5, reverse order of digits.
Original entry on oeis.org
0, 1, 2, 3, 4, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 0
Offset: 0
-
a031235 n k = a031235_tabf !! n !! k
a031235_row n = a031235_tabf !! n
a031235_tabf = iterate succ [0] where
succ [] = [1]
succ (4:ts) = 0 : succ ts
succ (t:ts) = (t + 1) : ts
-- Reinhard Zumkeller, Sep 18 2015
-
Reverse[IntegerDigits[#,5]]&/@Range[0,40]//Flatten (* Harvey P. Dale, Aug 02 2016 *)
-
A031235(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\5^k%5 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... - M. F. Hasler, Jul 21 2013
A030386
Triangle T(n,k): write n in base 4, reverse order of digits.
Original entry on oeis.org
0, 1, 2, 3, 0, 1, 1, 1, 2, 1, 3, 1, 0, 2, 1, 2, 2, 2, 3, 2, 0, 3, 1, 3, 2, 3, 3, 3, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 0, 1, 2
Offset: 0
Triangle begins:
0
1
2
3
0, 1
1, 1
2, 1
3, 1
0, 2
1, 2
2, 2
3, 2
0, 3
1, 3
2, 3
3, 3
0, 0, 1
1, 0, 1 ... - _Philippe Deléham_, Oct 20 2011
-
a030386 n k = a030386_tabf !! n !! k
a030386_row n = a030386_tabf !! n
a030386_tabf = iterate succ [0] where
succ [] = [1]
succ (3:ts) = 0 : succ ts
succ (t:ts) = (t + 1) : ts
-- Reinhard Zumkeller, Sep 18 2015
-
A030386_row := n -> op(convert(n, base, 4)):
seq(A030386_row(n), n=0..36); # Peter Luschny, Nov 28 2017
-
Flatten[Table[Reverse[IntegerDigits[n,4]],{n,0,50}]] (* Harvey P. Dale, Oct 13 2012 *)
-
A030386(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\4^k%4 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... \\ M. F. Hasler, Jul 21 2013
A031087
Triangle T(n,k): write n in base 9, reverse order of digits.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5
Offset: 0
-
a031087 n k = a031087_row n !! (k-1)
a031087_row n | n < 9 = [n]
| otherwise = m : a031087_row n' where (n',m) = divMod n 9
a031087_tabf = map a031087_row [0..]
-- Reinhard Zumkeller, Jul 07 2015
-
A031087(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\9^k%9 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013
A031007
Triangle T(n,k): Write n in base 7, reverse order of digits, to get row n.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 6, 6, 6
Offset: 0
-
Flatten[Table[Reverse[IntegerDigits[n,7]],{n,0,50}]] (* Harvey P. Dale, Feb 25 2014 *)
-
A031007(n, k=-1)={k<0&&error("Flattened sequence not yet implemented.");n\7^k%7} \\ Assuming that columns start with k=0 as in A030308, A030341, ... TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013
Comments